skip to main content

Title: Geophysical Response of Saturated Rock Joints during Shear
Monitoring the frictional behavior of rock discontinuities is essential for the identification of potential natural hazards caused by mechanical instability. Active seismic monitoring of changes in transmitted and/or reflected compressional (P) and shear (S) waves has been used as a non-destructive method to assess the degree of damage inside rock and to monitor slip along a discontinuity. The objective of this study is to explore the geophysical response of a saturated rock joint undergoing shear. Laboratory shear tests are conducted on prismatic Indiana limestone specimens. Induced tension fractures resulted in specimens composed of two blocks (152.4 mm  127.0 mm  50.8 mm) with rough contact surfaces. Direct shear experiments were performed inside a metal confinement chamber under an effective normal stress of 2 MPa on water-saturated specimens. During the experiments, the chamber pressure, the total normal load, the shear load and the slip displacement were monitored. During the tests, continuous pulses of P- and S-waves were transmitted through the specimen and the amplitudes of the transmitted and reflected waves were recorded. The paper provides results of the mechanical and geophysical response of saturated joints and compares them with those obtained from similar, but dry, joints. For dry joints, both transmitted and reflected P- and S-waves show a distinct peak wave amplitude prior to shear failure. However, for saturated joints, a distinct peak in amplitude is only observed in both transmitted and reflected S-waves. Transmitted and reflected P-waves, propagated through saturated rock, displayed a continuous decrease and increase in amplitude, respectively, but had a sudden change in the rate of amplitude change that can be taken as a seismic precursor to joint shear failure.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
56th US Rock Mechanics/Geomechanics Symposium
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The failure of rock along pre-existing discontinuities is a major concern when building structures on or in rock. A goal is to develop methodologies to identify signatures of imminent shear failure along discontinuities to enable implementation of measures to prevent the collapse of a structure. Previous studies identified precursory seismic signatures of shear failure along rock discontinuities in transmitted and reflected signals. Here, laboratory direct shear experiments were conducted on idealized saw-tooth discontinuities in gypsum to determine the differences or similarities in precursors observed in transmitted, reflected and converted elastic waves. Digital Image Correlation (DIC) was used to quantify the vertical and horizontal displacements along the discontinuity during shearing to relate the location and magnitude of slip with the measured wave amplitudes. Results from the experiments showed that seismic precursors to failure appeared as maxima in the transmitted wave amplitude and conversely as minima in the reflected amplitudes. Converted waves (S to P & P to S) were also detected and their amplitudes reached a maximum prior to shear failure. DIC results showed that slip occurred first at the top of the specimen, where the load was applied, and then progressed along the joint as the shear stress increased. This process was consistent with the precursors i.e., precursors were first recorded near the top and later at the center and finally at the bottom of the specimen. Interestingly, precursors from reflected waves were observed first, followed by precursors from transmitted and then by converted waves. Also, the differences in time of occurrence between the three precursor modes decreased along the plane of the discontinuity. The results showed that reflected waves were the most sensitive to damage and slip along a discontinuity and that monitoring for precursors may provide a method for detecting impending failure. 
    more » « less
  2. contain conspicuous acknowledgement of where and by whom the paper was presented. ABSTRACT: Shear strength along discontinuities plays a crucial role in the stability of rock structures. The development of geophysical methods to remotely monitor and assess changes in shear strength is essential to the identification of rock hazards that can lead to the loss of life and failure of civilian infrastructure. In this study, compressional and shear ultrasonic waves were used to monitor slip along discontinuities (with different surface profiles) during shearing. A series of laboratory direct shear experiments were performed on two gypsum blocks separated by a frictional discontinuity. The gypsum blocks had perfectly matched contact surfaces with a half-cycle sine wave profile that spanned the central third of the discontinuity, surrounded by planar surfaces. The amplitude of the half-cycle sine wave was varied and ranged between 2 to 10 times the height of the asperities. Compressional, P, and shear, S, ultrasonic waves were continuously transmitted and recorded throughout the shearing process, while Digital Image Correlation (DIC) was used to capture surface displacements. At low normal stresses, distinct maxima in the normalized P and S wave transmitted amplitudes occurred before shear failure in regions where dilation was observed. Where dilation was not detected, an increase in transmitted wave amplitude was observed, even after the peak shear stress was achieved. At high normal stresses, dilation was suppressed, which was associated with an increase in wave amplitude with shear stress until the peak, and then a decrease in amplitude. Monitoring changes in transmitted wave amplitude is a potential method for the detection of dilation along rock discontinuities. 
    more » « less
  3. Abstract

    Tectonic faults fail in a continuum of modes from slow earthquakes to elastodynamic rupture. Precursory variations in elastic wavespeed and amplitude, interpreted as indicators of imminent failure, have been observed in limited natural settings and lab experiments where they are thought to arise from contact rejuvenation and microcracking within and around the fault zone. However, the physical mechanisms and connections to fault creep are poorly understood. Here we vary loading stiffness during frictional shear to generate a range of slip modes and measure fault zone properties using transmitted elastic waves. We find that elastic wave amplitudes show clear changes before fault failure. The temporal onset of amplitude reduction scales with lab earthquake magnitude and the magnitude of this reduction varies with fault slip. Our data provide clear evidence of precursors to lab earthquakes and suggest that continuous seismic monitoring could be useful for assessing fault state and seismic hazard potential.

    more » « less
  4. Abstract

    We image the rupture process of the 2021 Mw 7.4 Maduo, Tibet earthquake using slowness‐enhanced back‐projection (BP) and joint finite fault inversion, which combines teleseismic broadband body waves, long‐period (166–333 s) seismic waves, and 3D ground displacements from radar satellites. The results reveal a left‐lateral strike‐slip rupture, propagating bilaterally on a 160 km long north‐dipping sub‐vertical fault system that bifurcates near its east end. About 80% of the total seismic moment occurs on the asperities shallower than 10 km, with a peak slip of 5.7 m. To simultaneously match the observed long‐period seismic waves and static displacements, potential deep slip is required, despite a tradeoff with the rigidity of the shallow crust. The deep slip existence, local crustal rigidity, and synthetic long‐period Earth response for Tibet earthquakes thus deserve further investigation. The WNW branch ruptures ∼75 km at ∼2.7 km/s, while the ESE branch ruptures ∼85 km at ∼3 km/s, though super‐shear rupture propagation possibly occurs during the ESE propagation from 12 to 20 s. Synthetic BP tests confirm overall sub‐shear rupture speeds and reveal a previously undocumented limitation caused by the signal interference between two bilateral branches. The stress analysis on the forks of the fault demonstrates that the pre‐compression inclination, rupture speed, and branching angle could explain the branching behavior on the eastern fork.

    more » « less
  5. Basal slip along glaciers and ice streams can be significantly modified by external time-dependent forcing, although it is not clear why some systems are more sensitive to tidal stresses. We have conducted a series of laboratory experiments to explore the effect of time varying load point velocity on ice-on-rock friction. Varying the load point velocity induces shear stress forcing, making this an analogous simulation of aspects of ice stream tidal modulation. Ambient pressure, double-direct shear experiments were conducted in a cryogenic servo-controlled biaxial deformation apparatus at temperatures between −2°C and −16°C. In addition to a background, median velocity (1 and 10 μm/s), a sinusoidal velocity was applied to the central sliding sample over a range of periods and amplitudes. Normal stress was held constant over each run (0.1, 0.5 or 1 MPa) and the shear stress was measured. Over the range of parameters studied, the full spectrum of slip behavior from creeping to slow-slip to stick-slip was observed, similar to the diversity of sliding styles observed in Antarctic and Greenland ice streams. Under conditions in which the amplitude of oscillation is equal to the median velocity, significant healing occurs as velocity approaches zero, causing a high-amplitude change in friction. The amplitude of the event increases with increasing period (i.e. hold time). At high normal stress, velocity oscillations force an otherwise stable system to behave unstably, with consistently-timed events during every cycle. Rate-state friction parameters determined from velocity steps show that the ice-rock interface is velocity strengthening. A companion paper describes a method of analyzing the oscillatory data directly. Forward modeling of a sinusoidally-driven slider block, using rate-and-state dependent friction formulation and experimentally derived parameters, successfully predicts the experimental output in all but a few cases. 
    more » « less