Low-cost and hardware-efficient design of trigonometric functions is challenging. Stochastic computing (SC), an emerging computing model processing random bit-streams, offers promising solutions for this problem. The existing implementations, however, often overlook the importance of the data converters necessary to generate the needed bit-streams. While recent advancements in SC bit-stream generators focus on basic arithmetic operations such as multiplication and addition, energy-efficient SC design of non-linear functions demands attention to both the computation circuit and the bit-stream generator. This work introduces TriSC, a novel approach for SC-based design of trigonometric functions enjoying state-of-the-art (SOTA) quasi-random bit-streams. Unlike SOTA SC designs of trigonometric functions that heavily rely on delay elements to decorrelate bit-streams, our approach avoids delay elements while improving the accuracy of the results. TriSC yields significant energy savings of up to 92% compared to SOTA. As two novel use cases studied for the first time in SC literature, we employ the proposed design for 2D image transformation and forward kinematics of a robotic arm, two computation-intensive applications demanding low-cost trigonometric designs.
more »
« less
Benefits of Stochastic Computing in Hearing Aid Filterbank Design
Designing low-cost filterbanks is important due to severe resource limitations imposed by hearing aid size. Here, we develop a novel FIR filterbank employing stochastic computing (SC). SC-based filters use (pseudo)-random bitstreams to efficiently perform the core filtering operation. We demonstrate that SC is well-suited to low-cost filterbank design and compare our SC filterbank to a conventional sequential binary (SB) design. We show that the SC design achieves the same accuracy and latency as the SB one, with an exceptionally large 70% reduction in chip area. The power consumption of our proposed SC filterbank is 38-96% that of the SB design.
more »
« less
- Award ID(s):
- 2006704
- PAR ID:
- 10324341
- Date Published:
- Journal Name:
- 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS)
- ISSN:
- 2766-4465
- Page Range / eLocation ID:
- 1-5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stochastic computing (SC) is a re-emerging computing paradigm providing low-cost and noise-tolerant designs for a wide range of arithmetic operations. SC circuits operate on uniform bit-streams with the value determined by the probability of observing 1’s in the bit-stream. The accuracy of SC operations highly depends on the correlation between input bit-streams. While some operations such as minimum and maximum value functions require highly correlated inputs, some other such as multiplication operation need uncorrelated or independent inputs for accurate computation. Developing low-cost and accurate correlation manipulation circuits is an important research in SC as these circuits can manage correlation between bit-streams without expensive bit-stream regeneration. This work proposes a novel in-stream correlator and decorrelator circuit that manages 1) correlation between stochastic bit-streams, and 2) distribution of 1’s in the output bit-streams. Compared to state-of-the-art solutions, our designs achieve lower hardware cost and higher accuracy. The output bit-streams enjoy a low-discrepancy distribution of bits which leads to higher quality of results. The effectiveness of the proposed circuits is shown with two case studies: SC design of sorting and median filteringmore » « less
-
Stochastic computing (SC) division circuits have gained importance in recent years compared to other arithmetic circuits due to their low complexity as a result of an accuracy tradeoff. Designing a division circuit is already complex in conventional binary-based hardware systems. Developing an accurate and efficient SC division circuit is an open research problem. Prior work proposed different SC division circuits by using multiplexers and JK-flip-flop units, which may require correlated or uncorrelated input bit-streams. This study is primarily centered on exploring a cost-effective and highly efficient bit-stream generator specifically designed for SC division circuits. In conjunction with this objective, we assess the performance of multiple bit-stream generators and analyze the impact of correlation on SC division. We compare different designs in terms of accuracy and hardware cost. Moreover, we discuss a low-cost and energy-efficient bit-stream generator via powers-of-2 Van der Corput (VDC) sequences. Among the tested sequence generators, our best results were achieved with VDC sequences. Our evaluation results demonstrate that the novel VDC-based design yields promising outputs, resulting in a 15.5% reduction in the area-delay product and an 18.05% saving in energy consumption for the same accuracy level compared to conventional bit-stream generators. Significantly, our investigation reveals that employing the proposed generator improves the precision compared to the state-of-the-art. We validate the proposed architecture with an image processing case study, achieving high PSNR and structural similarity values.more » « less
-
In the context of keyword spotting (KWS), the replacement of handcrafted speech features by learnable features has not yielded superior KWS performance. In this study, we demonstrate that filterbank learning outperforms handcrafted speech features for KWS whenever the number of filterbank channels is severely decreased. Reducing the number of channels might yield certain KWS performance drop, but also a substantial energy consumption reduction, which is key when deploying common always-on KWS on low-resource devices. Experimental results on a noisy version of the Google Speech Commands Dataset show that filterbank learning adapts to noise characteristics to provide a higher degree of robustness to noise, especially when dropout is integrated. Thus, switching from typically used 40-channel log-Mel features to 8-channel learned features leads to a relative KWS accuracy loss of only 3.5% while simultaneously achieving a 6.3× energy consumption reduction.more » « less
-
Stochastic computing (SC) is a reemerging computing paradigm that oers low-cost and noise-resilient hardware designs for a variety of arithmetic functions. In SC, circuits operate on uniform bit-streams, where the value is encoded by the probability of observing ‘1’s in the stream. The accuracy of SC operations highly depends on the correlation between input bit-streams. Some operations, such as minimum and maximum, require highly correlated inputs, whereas others like multiplication demand uncorrelated or statistically independent inputs for accurate results. Developing low-cost and accurate correlation manipulation circuits is critical, as they allow correlation management without incurring the high cost of bit-stream regeneration. This work introduces novel in-stream correlator and decorrelator circuits capable of: 1) adjusting correlation between stochastic bit-streams and 2) controlling the distribution of ‘1’s in the output bit-streams. Compared to state-of-the-art (SoA) approaches, our designs oer improved accuracy and reduced hardware overhead. The output bit-streams enjoy low-discrepancy (LD) distribution, leading to higher quality of results. To further increase the accuracy when dealing with pseudo-random inputs, we propose an enhancement module that balances the number of ‘1’s across adjacent input segments. We show the eectiveness of the proposed techniques through two application case studies: SC design of sorting and median filtering.more » « less
An official website of the United States government

