skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermodynamics of spin crossover in ferropericlase: an improved LDA + U sc calculation
Abstract We present LDA + U sc calculations of high-spin (HS) and low-spin (LS) states in ferropericlase (fp) with an iron concentration of 18.75%. The Hubbard parameter U is determined self-consistently with structures optimized at arbitrary pressures. We confirm a strong dependence of U on the pressure and spin state. Static calculations confirm that the antiferromagnetic configuration is more stable than the ferromagnetic one in the HS state, consistent with low-temperature measurements. Phonon calculations guarantee the dynamical stability of HS and LS states throughout the pressure range of the Earth mantle. Compression curves for HS and LS states agree well with experiments. Using a non-ideal mixing model for the HS to LS states solid solution, we obtain a crossover starting at ∼45 GPa at room temperature and considerably broader than previous results. The spin-crossover phase diagram is calculated, including vibrational, magnetic, electronic, and non-ideal HS–LS entropic contributions. Our results suggest the mixed-spin state predominates in fp in most of the lower mantle.  more » « less
Award ID(s):
1918134
PAR ID:
10324428
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Electronic Structure
Volume:
4
Issue:
1
ISSN:
2516-1075
Page Range / eLocation ID:
014008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The two most abundant minerals in the Earth’s lower mantle are bridgmanite and ferropericlase. The bulk modulus of ferropericlase (Fp) softens as iron d-electrons transition from a high-spin to low-spin state, affecting the seismic compressional velocity but not the shear velocity. Here, we identify a seismological expression of the iron spin crossover in fast regions associated with cold Fp-rich subducted oceanic lithosphere: the relative abundance of fast velocities in P- and S-wave tomography models diverges in the ~1,400-2,000 km depth range. This is consistent with a reduced temperature sensitivity of P-waves throughout the iron spin crossover. A similar signal is also found in seismically slow regions below ~1,800 km, consistent with broadening and deepening of the crossover at higher temperatures. The corresponding inflection in P-wave velocity is not yet observed in 1-D seismic profiles, suggesting that the lower mantle is composed of non-uniformly distributed thermochemical heterogeneities which dampen the global signature of the Fp spin crossover. 
    more » « less
  2. null (Ed.)
    Spin crossover (SCO) is a phenomenon observed for certain transition metal complexes with electronic configuration 3d4-3d7. The conversion between the low-spin (LS) and high-spin (HS) states is usually driven by a variety of external perturbations, such as temperature, pressure, or light. The switching between the enthalpically preferred LS state and entropically favorable HS state is accompanied by dramatic changes in the metal-ligand bond lengths, unit cell volume, optical absorption spectrum, and magnetic susceptibility.1 These changes make SCO materials suitable for applications in sensors, memory, and display devices. One of the central challenges in the SCO research is to initiate strongly cooperative interactions known to lead to abrupt spin transitions and thermal hysteresis that can be harvested as a memory effect. One of the strategies to enhance the cooperativity is to design SCO complexes with supramolecular interactions such as π-stacking of aromatic fragments or hydrogen bonding.2 In this work, we report syntheses and characterization of heteroleptic complexes of [Fe(tpma)(L)](ClO4)2 (tpma = tris(pyridin-2-ylmethyl)amine) with novel π-extended biimidazole-type ligands (L) bearing 2,3-dimethyl-naphthalene-, 6,7-dimethyl-2,3-diphenyl-quinoxaline, and 2,3-dimethyl-anthracene pendant fragments. Solvent-free naphthalene-functionalized complex [Fe(tpma)(xnap-bim)](ClO4)2 exhibits abrupt spin transition at T1/2 = 127K with a narrow 1 K hysteresis loop. In contrast, polymorph of this complex that contains one interstitial molecules of pyridine exhibits gradual SCO. Anthracene-functionalized complex [Fe(tpma)(anthra-bim)](ClO4)2 also crystallizes as two polymorphs. Structural studies at 100, 230, and 300 K revealed dramatic changes in the N-Fe-N biting angles and Fe-N distances, indicating the occurrence of temperature-induced SCO. Complex [Fe(tpma)(quin-bim)](ClO4)2 (quin-bim = 6,7-dimethyl-2,3-diphenyl-quinoxaline-2,2’-biimidazole) showed only HS state at 100 and 230 K. In the crystal packing the mononuclear cations form stacks along b axis. We discuss how the observed magnetic behavior correlates with changes in the crystal packing and interactions between the pendant aromatic substituents on the aforementioned complexes. 
    more » « less
  3. null (Ed.)
    Fe(II) coordination complexes with ligands of an intermediate field strength often show witching between the high-spin (HS) and low-spin (LS) electronic configurations, known as spin crossover (SCO). This spin-state conversion is achieved by changes in temperature, pressure, or photoexcitation, which make SCO complexes promising materials for various applications that rely on bistable systems. Multifunctional materials that exhibit both spin-state switching and conductivity can be created by combining Fe(II) SCO complexes with organic TCNQ-type electron acceptors. In such complexes, TCNQ●d– radical anions are typically arranged in layers of one-dimensional stacks that provide conducting pathways (Fig. 1). The stacking distance can be affected by structural changes induced by the alteration in the electronic configuration and, thus, bond lengths at the Fe(II) center, resulting in synergy between SCO and conductivity. The synthesis of such materials can be approached in two ways: (1) by coordinating TCNQ●d– ligands directly to the Fe(II) center, which is partially protected by blocking ligands that limit the growth of extended structures or (2) by co-crystallizing completely blocked Fe(II) centers with free TCNQ●d– radicals. We will discuss several examples of the second approach, in which homoleptic Fe(II) cationic SCO complexes with tridentate 2,6-bispyrazolyl-pyridine (bpp) type ligands have been co-crystallized with fractionally-charged TCNQ●d– radical anions. The temperature- and solvent-dependent magnetic behavior and transport properties of these materials will be discussed. We will also present new pathways to improve the design of such molecule-based conductors with spin-state switching properties. To the best of out knowledge, we report the first examples of Fe(II) based conducting molecular materials with abrupt temperature-driven spin transitions. 
    more » « less
  4. The synthesis, crystal structure determination, magnetic properties and bonding interaction analysis of a novel 3 d transition-metal complex, [CrBr 2 (NCCH 3 ) 4 ](Br 3 ), are reported. Single-crystal X-ray diffraction results show that [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) crystallizes in space group C 2/ m (No. 12) with a symmetric tribromide anion and the powder X-ray diffraction results show the high purity of the material specimen. X-ray photoelectron studies with a combination of magnetic measurements demonstrate that Cr adopts the 3+ oxidation state. Based on the Curie–Weiss analysis of magnetic susceptibility data, the Néel temperature is found to be around 2.2 K and the effective moment (μ eff ) of Cr 3+ in [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) is ∼3.8 µ B , which agrees with the theoretical value for Cr 3+ . The direct current magnetic susceptibility of the molecule shows a broad maximum at ∼2.3 K, which is consistent with the theoretical Néel temperature. The maximum temperature, however, shows no clear frequency dependence. Combined with the observed upturn in heat capacity below 2.3 K and the corresponding field dependence, it is speculated that the low-temperature magnetic feature of a broad transition in [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) could originate from a crossover from high spin to low spin for the split d orbital level low-lying states rather than a short-range ordering solely; this is also supported by the molecular orbital diagram obtained from theoretical calculations. 
    more » « less
  5. Abstract Three-dimensional models of Earth’s seismic structure can be used to identify temperature-dependent phenomena, including mineralogical phase and spin transformations, that are obscured in 1-D spherical averages. Full-waveform tomography maps seismic wave-speeds inside the Earth in three dimensions, at a higher resolution than classical methods. By providing absolute wave speeds (rather than perturbations) and simultaneously constraining bulk and shear wave speeds over the same frequency range, it becomes feasible to distinguish variations in temperature from changes in composition or spin state. We present a quantitative joint interpretation of bulk and shear wave speeds in the lower mantle, using a recently published full-waveform tomography model. At all depths the diversity of wave speeds cannot be explained by an isochemical mantle. Between 1000 and 2500 km depth, hypothetical mantle models containing an electronic spin crossover in ferropericlase provide a significantly better fit to the wave-speed distributions, as well as more realistic temperatures and silica contents, than models without a spin crossover. Below 2500 km, wave speed distributions are explained by an enrichment in silica towards the core-mantle boundary. This silica enrichment may represent the fractionated remains of an ancient basal magma ocean. 
    more » « less