skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermal management materials for energy-efficient and sustainable future buildings
Thermal management plays a key role in improving the energy efficiency and sustainability of future building envelopes. Here, we focus on the materials perspective and discuss the fundamental needs, current status, and future opportunities for thermal management of buildings. First, we identify the primary considerations and evaluation criteria for high-performance thermal materials. Second, state-of-the-art thermal materials are reviewed, ranging from conventional thermal insulating fiberglass, mineral wool, cellulose, and foams, to aerogels and mesoporous structures, as well as multifunctional thermal management materials. Further, recent progress on passive regulation and thermal energy storage systems are discussed, including sensible heat storage, phase change materials, and radiative cooling. Moreover, we discuss the emerging materials systems with tunable thermal and other physical properties that could potentially enable dynamic and interactive thermal management solutions for future buildings. Finally, we discuss the recent progress in theory and computational design from first-principles atomistic theory, molecular dynamics, to multiscale simulations and machine learning. We expect the rational design that combines data-driven computation and multiscale experiments could bridge the materials properties from microscopic to macroscopic scales and provide new opportunities in improving energy efficiency and enabling adaptive implementation per customized demand for future buildings.  more » « less
Award ID(s):
1753393
PAR ID:
10324526
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
57
Issue:
92
ISSN:
1359-7345
Page Range / eLocation ID:
12236 to 12253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermal management is becoming a critical technology challenge for modern electronics with decreasing device size and increasing power density. One key materials innovation is the development of advanced thermal interfaces in electronic packaging to enable efficient heat dissipation and improve device performance, which has attracted intensive research efforts from both academia and industry over the past several decades. Here we review the recent progress in both theory and experiment for developing high-performance thermal interface materials. First, the basic theories and computational frameworks for interface energy transport are discussed, ranging from atomistic interface scattering to multiscale disorders that contributed to thermal boundary resistance. Second, state-of-the-art experimental techniques including steady-state and transient thermal measurements are discussed and compared. Moreover, the important structure design, requirements, and property factors for thermal interface materials depending on different applications are summarized and exemplified with the recent literature. Finally, emerging new semiconductors and polymers with high thermal conductivity are briefly reviewed and opportunities for future research are discussed. 
    more » « less
  2. The piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals). Importantly, the mechanisms of how the piezo-phototronic effect controls the optoelectronic processes and the recent progress and applications in the above-mentioned materials and devices are highlighted and summarized. Only photocatalysts, solar cells, photodetectors, and LEDs that display piezo-phototronic behavior are reviewed. Material and structural design, property characterization, theoretical simulation calculations, and mechanism analysis are then examined as strategies to further enhance the quantum yield efficiency of optoelectronic devices via the piezo-phototronic effect. This comprehensive overview will guide future fundamental and applied studies that capitalize on the piezo-phototronic effect for energy conversion and storage. 
    more » « less
  3. Chu, Wilson (Ed.)
    Two-dimensional materials (e.g., graphene and transition metal dichalcogenides) and their heterostructures have enormous applications in electrochemical energy storage systems such as batteries. A comprehensive and solid understanding of these materials’ thermal transport and mechanism is essential for practical device design. Several advanced experimental techniques have been developed to measure the intrinsic thermal conductivity of materials. However, experiments have challenges in providing improved control and characterization of complex structures, especially for low-dimensional materials. Theoretical and simulation tools, such as first-principles calculations, Boltzmann transport equations, molecular dynamics simulations, lattice dynamics simulation, and nonequilibrium Green’s function, provide reliable predictions of thermal conductivity and physical insights to understand the underlying thermal transport mechanism in materials. However, doing these calculations requires high computational resources. The development of new materials synthesis technology and fast-growing demand for rapid and accurate prediction of physical properties requires novel computational approaches. The machine learning method provides a promising solution to address such needs. This review details the recent development in atomistic/molecular studies and machine learning of thermal transport in two-dimensional materials. The paper also addresses the latest significant experimental advances. However, designing the best two-dimensional materials-based heterostructures is like a multivariate optimization problem. For example, a particular heterostructure may be suitable for thermal transport but can have lower mechanical strength/stability. For bilayer and multilayer structures, the interlayer distance may influence the thermal transport properties and interlayer strength. Therefore, the last part of this review addresses the future research direction in two-dimensional materials-based heterostructure design for thermal transport in energy storage systems. 
    more » « less
  4. Abstract Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template‐based and template‐free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo‐periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy‐related applications, and the remaining challenges that warrant future study. 
    more » « less
  5. Abstract Nature has developed high‐performance materials and structures over millions of years of evolution and provides valuable sources of inspiration for the design of next‐generation structural materials, given the variety of excellent mechanical, hydrodynamic, optical, and electrical properties. Biomimicry, by learning from nature's concepts and design principles, is driving a paradigm shift in modern materials science and technology. However, the complicated structural architectures in nature far exceed the capability of traditional design and fabrication technologies, which hinders the progress of biomimetic study and its usage in engineering systems. Additive manufacturing (three‐dimensional (3D) printing) has created new opportunities for manipulating and mimicking the intrinsically multiscale, multimaterial, and multifunctional structures in nature. Here, an overview of recent developments in 3D printing of biomimetic reinforced mechanics, shape changing, and hydrodynamic structures, as well as optical and electrical devices is provided. The inspirations are from various creatures such as nacre, lobster claw, pine cone, flowers, octopus, butterfly wing, fly eye, etc., and various 3D‐printing technologies are discussed. Future opportunities for the development of biomimetic 3D‐printing technology to fabricate next‐generation functional materials and structures in mechanical, electrical, optical, and biomedical engineering are also outlined. 
    more » « less