skip to main content


Title: Ray-illumination compensation for adjoint-state first-arrival traveltime tomography
First-arrival traveltime tomography is an essential method for obtaining near-surface velocity models. The adjoint-state first-arrival traveltime tomography is appealing due to its straightforward implementation, low computational cost, and low memory consumption. Because solving the point-source isotropic eikonal equation by either ray tracers or eikonal solvers intrinsically corresponds to emanating discrete rays from the source point, the resulting traveltime gradient is singular at the source point, and we denote such a singular pattern the imprint of ray-illumination. Because the adjoint-state equation propagates traveltime residuals back to the source point according to the negative traveltime gradient, the resulting adjoint state will inherit such an imprint of ray-illumination, leading to singular gradient-descent directions when updating the velocity model in the adjoint-state traveltime tomography. To mitigate this imprint, we solve the adjoint-state equation twice but with different boundary conditions: one being taken to be regular data residuals and the other taken to be ones uniformly, so that we are able to use the latter adjoint state to normalize the regular adjoint state and we further use the normalized quantity to serve as the gradient direction to update the velocity model; we call this process ray-illumination compensation. To overcome the issue of limited aperture, we have developed a spatially varying regularization method to stabilize the new gradient direction. A synthetic example demonstrates that our method is able to mitigate the imprint of ray-illumination, remove the footprint effect near source points, and provide uniform velocity updates along raypaths. A complex example extracted from the Marmousi2 model and a migration example illustrate that the new method accurately recovers the velocity model and that an offset-dependent inversion strategy can further improve the quality of recovered velocity models.  more » « less
Award ID(s):
2012046
NSF-PAR ID:
10324666
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
GEOPHYSICS
Volume:
86
Issue:
5
ISSN:
0016-8033
Page Range / eLocation ID:
U109 to U119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have formulated the Fréchet kernel computation using the adjoint-state method based on a fractional viscoacoustic wave equation. We first numerically prove that the 1/2- and the 3/2-order fractional Laplacian operators are self-adjoint. Using this property, we find that the adjoint wave propagator preserves the dispersion and compensates the amplitude, whereas the time-reversed adjoint wave propagator behaves identically to the forward propagator with the same dispersion and dissipation characters. Without introducing rheological mechanisms, this formulation adopts an explicit [Formula: see text] parameterization, which avoids the implicit [Formula: see text] in the conventional viscoacoustic/viscoelastic full-waveform inversion ([Formula: see text]-FWI). In addition, because of the decoupling of operators in the wave equation, the viscoacoustic Fréchet kernel is separated into three distinct contributions with clear physical meanings: lossless propagation, dispersion, and dissipation. We find that the lossless propagation kernel dominates the velocity kernel, whereas the dissipation kernel dominates the attenuation kernel over the dispersion kernel. After validating the Fréchet kernels using the finite-difference method, we conduct a numerical example to demonstrate the capability of the kernels to characterize the velocity and attenuation anomalies. The kernels of different misfit measurements are presented to investigate their different sensitivities. Our results suggest that, rather than the traveltime, the amplitude and the waveform kernels are more suitable to capture attenuation anomalies. These kernels lay the foundation for the multiparameter inversion with the fractional formulation, and the decoupled nature of them promotes our understanding of the significance of different physical processes in [Formula: see text]-FWI. 
    more » « less
  2. Abstract

    This paper presents a fast sweeping method (FSM) to calculate the first‐arrival traveltimes of the qP, qSV, and qSH waves in two‐dimensional (2D) transversely isotropic media, whose symmetry axis may have an arbitrary orientation (tilted transverse isotropy [TTI]). The method discretizes the anisotropic eikonal equation with finite difference approximations on a rectangular mesh and solves the discretized system iteratively with the Gauss‐Seidel iterations along alternating sweeping orderings. At each mesh point, a highly nonlinear equation is solved to update the numerical solution until its convergence. For solving the nonlinear equation, an interval that contains the solutions is first determined and partitioned into few subintervals such that each subinterval contains one solution; then, the false position method is applied on these subintervals to compute the solutions; after that, among all possible solutions for the discretized equation, a causality condition is imposed, and the minimum solution satisfying the causality condition is chosen to update the solution. For problems with a point‐source condition, the FSM is extended for solving the anisotropic eikonal equation after a factorization technique is applied to resolve the source singularities, which yields clean first‐order accuracy. When dealing with the triplication of the qSV wave, solutions corresponding to the minimal group velocity are chosen such that continuous solutions are computed. The accuracy, efficiency, and capability of the proposed method are demonstrated with numerical experiments.

     
    more » « less
  3. Near-wall flow simulation remains a central challenge in aerodynamics modelling: Reynolds-averaged Navier–Stokes predictions of separated flows are often inaccurate, and large-eddy simulation (LES) can require prohibitively small near-wall mesh sizes. A deep learning (DL) closure model for LES is developed by introducing untrained neural networks into the governing equations and training in situ for incompressible flows around rectangular prisms at moderate Reynolds numbers. The DL-LES models are trained using adjoint partial differential equation (PDE) optimization methods to match, as closely as possible, direct numerical simulation (DNS) data. They are then evaluated out-of-sample – for aspect ratios, Reynolds numbers and bluff-body geometries not included in the training data – and compared with standard LES models. The DL-LES models outperform these models and are able to achieve accurate LES predictions on a relatively coarse mesh (downsampled from the DNS mesh by factors of four or eight in each Cartesian direction). We study the accuracy of the DL-LES model for predicting the drag coefficient, near-wall and far-field mean flow, and resolved Reynolds stress. A crucial challenge is that the LES quantities of interest are the steady-state flow statistics; for example, a time-averaged velocity component $\langle {u}_i\rangle (x) = \lim _{t \rightarrow \infty } ({1}/{t}) \int _0^t u_i(s,x)\, {\rm d}s$ . Calculating the steady-state flow statistics therefore requires simulating the DL-LES equations over a large number of flow times through the domain. It is a non-trivial question whether an unsteady PDE model with a functional form defined by a deep neural network can remain stable and accurate on $t \in [0, \infty )$ , especially when trained over comparatively short time intervals. Our results demonstrate that the DL-LES models are accurate and stable over long time horizons, which enables the estimation of the steady-state mean velocity, fluctuations and drag coefficient of turbulent flows around bluff bodies relevant to aerodynamics applications. 
    more » « less
  4. We have developed a Liouville partial-differential-equation (PDE)-based method for computing complex-valued eikonals in real phase space in the multivalued sense in attenuating media with frequency-independent qualify factors, where the new method computes the real and imaginary parts of the complex-valued eikonal in two steps by solving Liouville equations in real phase space. Because the earth is composed of attenuating materials, seismic waves usually attenuate so that seismic data processing calls for properly treating the resulting energy losses and phase distortions of wave propagation. In the regime of high-frequency asymptotics, the complex-valued eikonal is one essential ingredient for describing wave propagation in attenuating media because this unique quantity summarizes two wave properties into one function: Its real part describes the wave kinematics and its imaginary part captures the effects of phase dispersion and amplitude attenuation. Because some popular ordinary-differential-equation (ODE)-based ray-tracing methods for computing complex-valued eikonals in real space distribute the eikonal function irregularly in real space, we are motivated to develop PDE-based Eulerian methods for computing such complex-valued eikonals in real space on regular meshes. Therefore, we solved novel paraxial Liouville PDEs in real phase space so that we can compute the real and imaginary parts of the complex-valued eikonal in the multivalued sense on regular meshes. We call the resulting method the Liouville PDE method for complex-valued multivalued eikonals in attenuating media; moreover, this new method provides a unified framework for Eulerianizing several popular approximate real-space ray-tracing methods for complex-valued eikonals, such as viscoacoustic ray tracing, real viscoelastic ray tracing, and real elastic ray tracing. In addition, we also provide Liouville PDE formulations for computing multivalued ray amplitudes in a weakly viscoacoustic medium. Numerical examples, including a synthetic gas-cloud model, demonstrate that our methods yield highly accurate complex-valued eikonals in the multivalued sense. 
    more » « less
  5. SUMMARY

    Long-period (T > 10 s) shear wave reflections between the surface and reflecting boundaries below seismic stations are useful for studying phase transitions in the mantle transition zone (MTZ) but shear-velocity heterogeneity and finite-frequency effects complicate the interpretation of waveform stacks. We follow up on a recent study by Shearer & Buehler (hereafter SB19) of the top-side shear wave reflection Ssds as a probe for mapping the depths of the 410-km and 660-km discontinuities beneath the USArray. Like SB19, we observe that the recorded Ss410s-S and Ss660s-S traveltime differences are longer at stations in the western United States than in the central-eastern United States. The 410-km and 660-km discontinuities are about 40–50 km deeper beneath the western United States than the central-eastern United States if Ss410s-S and Ss660s-S traveltime differences are transformed to depth using a common-reflection point (CRP) mapping approach based on a 1-D seismic model (PREM in our case). However, the east-to-west deepening of the MTZ disappears in the CRP image if we account for 3-D shear wave velocity variations in the mantle according to global tomography. In addition, from spectral-element method synthetics, we find that ray theory overpredicts the traveltime delays of the reverberations. Undulations of the 410-km and 660-km discontinuities are underestimated when their wavelengths are smaller than the Fresnel zones of the wave reverberations in the MTZ. Therefore, modelling of layering in the upper mantle must be based on 3-D reference structures and accurate calculations of reverberation traveltimes.

     
    more » « less