skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rethinking Fairness: An Interdisciplinary Survey of Critiques of Hegemonic ML Fairness Approaches
This survey article assesses and compares existing critiques of current fairness-enhancing technical interventions in machine learning (ML) that draw from a range of non-computing disciplines, including philosophy, feminist studies, critical race and ethnic studies, legal studies, anthropology, and science and technology studies. It bridges epistemic divides in order to offer an interdisciplinary understanding of the possibilities and limits of hegemonic computational approaches to ML fairness for producing just outcomes for society’s most marginalized. The article is organized according to nine major themes of critique wherein these different fields intersect: 1) how "fairness" in AI fairness research gets defined; 2) how problems for AI systems to address get formulated; 3) the impacts of abstraction on how AI tools function and its propensity to lead to technological solutionism; 4) how racial classification operates within AI fairness research; 5) the use of AI fairness measures to avoid regulation and engage in ethics washing; 6) an absence of participatory design and democratic deliberation in AI fairness considerations; 7) data collection practices that entrench “bias,” are non-consensual, and lack transparency; 8) the predatory inclusion of marginalized groups into AI systems; and 9) a lack of engagement with AI’s long-term social and ethical outcomes. Drawing from these critiques, the article concludes by imagining future ML fairness research directions that actively disrupt entrenched power dynamics and structural injustices in society.  more » « less
Award ID(s):
1939728
PAR ID:
10324756
Author(s) / Creator(s):
Date Published:
Journal Name:
The journal of artificial intelligence research
Volume:
74
ISSN:
1076-9757
Page Range / eLocation ID:
75-109
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A key goal of the fair-ML community is to develop machine-learning based systems that, once introduced into a social context, can achieve social and legal outcomes such as fairness, justice, and due process. Bedrock concepts in computer science---such as abstraction and modular design---are used to define notions of fairness and discrimination, to produce fairness-aware learning algorithms, and to intervene at different stages of a decision-making pipeline to produce "fair" outcomes. In this paper, however, we contend that these concepts render technical interventions ineffective, inaccurate, and sometimes dangerously misguided when they enter the societal context that surrounds decision-making systems. We outline this mismatch with five "traps" that fair-ML work can fall into even as it attempts to be more context-aware in comparison to traditional data science. We draw on studies of sociotechnical systems in Science and Technology Studies to explain why such traps occur and how to avoid them. Finally, we suggest ways in which technical designers can mitigate the traps through a refocusing of design in terms of process rather than solutions, and by drawing abstraction boundaries to include social actors rather than purely technical ones. 
    more » « less
  2. Most Fairness in AI research focuses on exposing biases in AI systems. A broader lens on fairness reveals that AI can serve a greater aspiration: rooting out societal inequities from their source. Specifically, we focus on inequities in health information, and aim to reduce bias in that domain using AI. The AI algorithms under the hood of search engines and social media, many of which are based on recommender systems, have an outsized impact on the quality of medical and health information online. Therefore, embedding bias detection and reduction into these recommender systems serving up medical and health content online could have an outsized positive impact on patient outcomes and wellbeing. In this position paper, we offer the following contributions: (1) we propose a novel framework of Fairness via AI, inspired by insights from medical education, sociology and antiracism; (2) we define a new term, bisinformation, which is related to, but distinct from, misinformation, and encourage researchers to study it; (3) we propose using AI to study, detect and mitigate biased, harmful, and/or false health information that disproportionately hurts minority groups in society; and (4) we suggest several pillars and pose several open problems in order to seed inquiry inthis new space. While part (3) of this work specifically focuses on the health domain, the fundamental computer science advances and contributions stemming from research efforts in bias reduction and Fairness via AI have broad implications in all areas of society. 
    more » « less
  3. Most Fairness in AI research focuses on exposing biases in AI systems. A broader lens on fairness reveals that AI can serve a greater aspiration: rooting out societal inequities from their source. Specifically, we focus on inequities in health information, and aim to reduce bias in that domain using AI. The AI algorithms under the hood of search engines and social media, many of which are based on recommender systems, have an outsized impact on the quality of medical and health information online. Therefore, embedding bias detection and reduction into these recommender systems serving up medical and health content online could have an outsized positive impact on patient outcomes and wellbeing. In this position paper, we offer the following contributions: (1) we propose a novel framework of Fairness via AI, inspired by insights from medical education, sociology and antiracism; (2) we define a new term, bisinformation, which is related to, but distinct from, misinformation, and encourage researchers to study it; (3) we propose using AI to study, detect and mitigate biased, harmful, and/or false health information that disproportionately hurts minority groups in society; and (4) we suggest several pillars and pose several open problems in order to seed inquiry inthis new space. While part (3) of this work specifically focuses on the health domain, the fundamental computer science advances and contributions stemming from research efforts in bias reduction and Fairness via AI have broad implications in all areas of society. 
    more » « less
  4. Fairness is one of the most desirable societal principles in collective decision-making. It has been extensively studied in the past decades for its axiomatic properties and has received substantial attention from the multiagent systems community in recent years for its theoretical and computational aspects in algorithmic decision-making. However, these studies are often not sufficiently rich to capture the intricacies of human perception of fairness in the ambivalent nature of the real-world problems. We argue that not only fair solutions should be deemed desirable by social planners (designers), but they should be governed by human and societal cognition, consider perceived outcomes based on human judgement, and be verifiable. We discuss how achieving this goal requires a broad transdisciplinary approach ranging from computing and AI to behavioral economics and human-AI interaction. In doing so, we identify shortcomings and long-term challenges of the current literature of fair division, describe recent efforts in addressing them, and more importantly, highlight a series of open research directions. 
    more » « less
  5. null (Ed.)
    Systems that augment sensory abilities are increasingly employing AI and machine learning (ML) approaches, with applications ranging from object recognition and scene description tools for blind users to sound awareness tools for d/Deaf users. However, unlike many other AI-enabled technologies these systems provide information that is already available to non-disabled people. In this paper, we discuss unique AI fairness challenges that arise in this context, including accessibility issues with data and models, ethical implications in deciding what sensory information to convey to the user, and privacy concerns both for the primary user and for others. 
    more » « less