skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Fairness Fair: Bringing Human Perception into Collective Decision-Making
Fairness is one of the most desirable societal principles in collective decision-making. It has been extensively studied in the past decades for its axiomatic properties and has received substantial attention from the multiagent systems community in recent years for its theoretical and computational aspects in algorithmic decision-making. However, these studies are often not sufficiently rich to capture the intricacies of human perception of fairness in the ambivalent nature of the real-world problems. We argue that not only fair solutions should be deemed desirable by social planners (designers), but they should be governed by human and societal cognition, consider perceived outcomes based on human judgement, and be verifiable. We discuss how achieving this goal requires a broad transdisciplinary approach ranging from computing and AI to behavioral economics and human-AI interaction. In doing so, we identify shortcomings and long-term challenges of the current literature of fair division, describe recent efforts in addressing them, and more importantly, highlight a series of open research directions.  more » « less
Award ID(s):
2144413 2107173
PAR ID:
10533708
Author(s) / Creator(s):
Publisher / Repository:
AAAI Conference on Artificial Intelligence
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
20
ISSN:
2159-5399
Page Range / eLocation ID:
22624 to 22631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The widespread adoption of Artificial Intelligence (AI) systems has profoundly reshaped decision-making in social, political, and commercial contexts. This paper explores the critical issue of fairness in AI-driven decision-making, particularly in allocating resources and tasks. By examining recent advancements and key questions in computational social choice, I highlight challenges and prospects in designing fair systems in collective decision-making that are scalable, adaptable to intricate environments, and are aligned with complex and diverse human preferences. 
    more » « less
  2. AI systems have been known to amplify biases in real-world data. Explanations may help human-AI teams address these biases for fairer decision-making. Typically, explanations focus on salient input features. If a model is biased against some protected group, explanations may include features that demonstrate this bias, but when biases are realized through proxy features, the relationship between this proxy feature and the protected one may be less clear to a human. In this work, we study the effect of the presence of protected and proxy features on participants’ perception of model fairness and their ability to improve demographic parity over an AI alone. Further, we examine how different treatments—explanations, model bias disclosure and proxy correlation disclosure—affect fairness perception and parity. We find that explanations help people detect direct but not indirect biases. Additionally, regardless of bias type, explanations tend to increase agreement with model biases. Disclosures can help mitigate this effect for indirect biases, improving both unfairness recognition and decision-making fairness. We hope that our findings can help guide further research into advancing explanations in support of fair human-AI decision-making. 
    more » « less
  3. Recent years have witnessed the growing literature in empirical evaluation of explainable AI (XAI) methods. This study contributes to this ongoing conversation by presenting a comparison on the effects of a set of established XAI methods in AI-assisted decision making. Based on our review of previous literature, we highlight three desirable properties that ideal AI explanations should satisfy — improve people’s understanding of the AI model, help people recognize the model uncertainty, and support people’s calibrated trust in the model. Through three randomized controlled experiments, we evaluate whether four types of common model-agnostic explainable AI methods satisfy these properties on two types of AI models of varying levels of complexity, and in two kinds of decision making contexts where people perceive themselves as having different levels of domain expertise. Our results demonstrate that many AI explanations do not satisfy any of the desirable properties when used on decision making tasks that people have little domain expertise in. On decision making tasks that people are more knowledgeable, the feature contribution explanation is shown to satisfy more desiderata of AI explanations, even when the AI model is inherently complex. We conclude by discussing the implications of our study for improving the design of XAI methods to better support human decision making, and for advancing more rigorous empirical evaluation of XAI methods. 
    more » « less
  4. With the increasing prevalence of automatic decision-making systems, concerns regarding the fairness of these systems also arise. Without a universally agreed-upon definition of fairness, given an automated decision-making scenario, researchers often adopt a crowdsourced approach to solicit people’s preferences across multiple fairness definitions. However, it is often found that crowdsourced fairness preferences are highly context-dependent, making it intriguing to explore the driving factors behind these preferences. One plausible hypothesis is that people’s fairness preferences reflect their perceived risk levels for different decision-making mistakes, such that the fairness definition that equalizes across groups the type of mistakes that are perceived as most serious will be preferred. To test this conjecture, we conduct a human-subject study (𝑁 =213) to study people’s fairness perceptions in three societal contexts. In particular, these three societal contexts differ on the expected level of risk associated with different types of decision mistakes, and we elicit both people’s fairness preferences and risk perceptions for each context. Our results show that people can often distinguish between different levels of decision risks across different societal contexts. However, we find that people’s fairness preferences do not vary significantly across the three selected societal contexts, except for within a certain subgroup of people (e.g., people with a certain racial background). As such, we observe minimal evidence suggesting that people’s risk perceptions of decision mistakes correlate with their fairness preference. These results highlight that fairness preferences are highly subjective and nuanced, and they might be primarily affected by factors other than the perceived risks of decision mistakes. 
    more » « less
  5. Consider a bank that uses an AI system to decide which loan applications to approve. We want to ensure that the system is fair, that is, it does not discriminate against applicants based on a predefined list of sensitive attributes, such as gender and ethnicity. We expect there to be a regulator whose job it is to certify the bank's system as fair or unfair. We consider issues that the regulator will have to confront when making such a decision, including the precise definition of fairness, dealing with proxy variables, and dealing with what we call allowed variables, that is, variables such as salary on which the decision is allowed to depend, despite being correlated with sensitive variables. We show (among other things) that the problem of deciding fairness as we have defined it is co-NP-complete, but then argue that, despite that, in practice the problem should be manageable. 
    more » « less