skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transgenerational plasticity and the capacity to adapt to low salinity in the eastern oyster, Crassostrea virginica
Salinity conditions in oyster breeding grounds in the Gulf of Mexico are expected to drastically change due to increased precipitation from climate change and anthropogenic changes to local hydrology. We determined the capacity of the eastern oyster, Crassostrea virginica , to adapt via standing genetic variation or acclimate through transgenerational plasticity (TGP). We outplanted oysters to either a low- or medium-salinity site in Louisiana for 2 years. We then crossed adult parents using a North Carolina II breeding design, and measured body size and survival of larvae 5 dpf raised under low or ambient salinity. We found that TGP is unlikely to significantly contribute to low-salinity tolerance since we did not observe increased growth or survival in offspring reared in low salinity when their parents were also acclimated at a low-salinity site. However, we detected genetic variation for body size, with an estimated heritability of 0.68 ± 0.25 (95% CI). This suggests there is ample genetic variation for this trait to evolve, and that evolutionary adaptation is a possible mechanism through which oysters will persist with future declines in salinity. The results of this experiment provide valuable insights into successfully breeding low-salinity tolerance in this commercially important species.  more » « less
Award ID(s):
1737170
PAR ID:
10324764
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1951
ISSN:
0962-8452
Page Range / eLocation ID:
20203118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis The presence of standing genetic variation will play a role in determining a population's capacity to adapt to environmentally relevant stressors. In the Gulf of Mexico, extreme climatic events and anthropogenic changes to local hydrology will expose productive oyster breeding grounds to stressful low salinity conditions. We identified genetic variation for performance under low salinity (due to the combined effects of low salinity and genetic load) using a single-generation selection experiment on larvae from two populations of the eastern oyster, Crassostrea virginica. We used pool-sequencing to test for allele frequency differences at 152 salinity-associated genes for larval families pre- and post-low salinity exposure. Our results have implications for how evolutionary change occurs during early life history stages at environmentally relevant salinities. Consistent with observations of high genetic load observed in oysters, we demonstrate evidence for purging of deleterious alleles at the larval stage in C. virginica. In addition, we observe increases in allele frequencies at multiple loci, suggesting that natural selection for low salinity performance at the larval stage can act as a filter for genotypes found in adult populations. 
    more » « less
  2. Abstract The eastern oyster, Crassostrea virginica, forms reefs that provide critical services to the surrounding ecosystem. These reefs are at risk from climate change, in part because altered rainfall patterns may amplify local fluctuations in salinity, impacting oyster recruitment, survival, and growth. As in other marine organisms, warming water temperatures might interact with these changes in salinity to synergistically influence oyster physiology. In this study, we used comparative transcriptomics, measurements of physiology, and a field assessment to investigate what phenotypic changes C. virginica uses to cope with combined temperature and salinity stress in the Gulf of Mexico. Oysters from a historically low salinity site (Sister Lake, LA) were exposed to fully crossed temperature (20°C and 30°C) and salinity (25, 15, and 7 PSU) treatments. Using comparative transcriptomics on oyster gill tissue, we identified a greater number of genes that were differentially expressed (DE) in response to low salinity at warmer temperatures. Functional enrichment analysis showed low overlap between genes DE in response to thermal stress compared with hypoosmotic stress and identified enrichment for gene ontologies associated with cell adhesion, transmembrane transport, and microtubule-based process. Experiments also showed that oysters changed their physiology at elevated temperatures and lowered salinity, with significantly increased respiration rates between 20°C and 30°C. However, despite the higher energetic demands, oysters did not increase their feeding rate. To investigate transcriptional differences between populations in situ, we collected gill tissue from three locations and two time points across the Louisiana Gulf coast and used quantitative PCR to measure the expression levels of seven target genes. We found an upregulation of genes that function in osmolyte transport, oxidative stress mediation, apoptosis, and protein synthesis at our low salinity site and sampling time point. In summary, oysters altered their phenotype more in response to low salinity at higher temperatures as evidenced by a higher number of DE genes during laboratory exposure, increased respiration (higher energetic demands), and in situ differential expression by season and location. These synergistic effects of hypoosmotic stress and increased temperature suggest that climate change will exacerbate the negative effects of low salinity exposure on eastern oysters. 
    more » « less
  3. NA (Ed.)
    The realized niche of many sessile intertidal organisms is constrained by different stressors that set boundaries for their distribution based on tidal elevation. Higher tidal elevation increases desiccation risk but can provide a refuge from predation. Conversely, deeper water increases feeding time and growth but also increases vulnerability to benthic predators. Eastern oysters Crassostrea virginica harden their shells in response to predator cues, which reduces their mortality from predation. We performed a field study to investigate if this defense mechanism could be manipulated to expand their realized niche and increase space for oyster survival and growth. We raised oysters in the presence of predators (blue crabs Callinectes sapidus) or in nopredator controls, measured changes in shell morphology, and then monitored oyster survival at different tidal elevations across 7 locations with different predator and salinity regimes. Oyster survival was significantly higher at the highest tidal elevations tested. Exposure to predators before deployment also significantly increased shell hardness and survival, with intertidal oysters experiencing greater improvement in survival from cue exposure than subtidal oysters. Intertidal placement (>15% exposure time) had larger effects on survival than predator exposure, but predator exposure increased oyster survival at all tidal elevations, suggesting that predator induction could help oysters both deter predators and resist abiotic stressors like desiccation, and perhaps increase the spatial areas where oysters can be restored 
    more » « less
  4. The realized niche of many sessile intertidal organisms is constrained by different stressors that set boundaries for their distribution based on tidal elevation. Higher tidal elevation increases desiccation risk but can provide a refuge from predation. Conversely, deeper water increases feeding time and growth but also increases vulnerability to benthic predators. Eastern oystersCrassostrea virginicaharden their shells in response to predator cues, which reduces their mortality from predation. We performed a field study to investigate if this defense mechanism could be manipulated to expand their realized niche and increase space for oyster survival and growth. We raised oysters in the presence of predators (blue crabsCallinectes sapidus) or in no-predator controls, measured changes in shell morphology, and then monitored oyster survival at different tidal elevations across 7 locations with different predator and salinity regimes. Oyster survival was significantly higher at the highest tidal elevations tested. Exposure to predators before deployment also significantly increased shell hardness and survival, with intertidal oysters experiencing greater improvement in survival from cue exposure than subtidal oysters. Intertidal placement (>15% exposure time) had larger effects on survival than predator exposure, but predator exposure increased oyster survival at all tidal elevations, suggesting that predator induction could help oysters both deter predators and resist abiotic stressors like desiccation, and perhaps increase the spatial areas where oysters can be restored. 
    more » « less
  5. Abstract Adaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal‐limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold‐water species at‐risk. We present a study of rainbow darters (Etheostoma caeruleum) in which we evaluated the importance of genetic variation on adaptive potential and determined responses to extreme thermal stress. We compared fine‐scale patterns of morphological and thermal tolerance differentiation across eight sites, including a unique lake habitat. We also inferred contemporary population structure using genomic data and characterized the relationship between individual genetic diversity and stress tolerance. We found site‐specific variation in thermal tolerance that generally matched local conditions and morphological differences associated with lake‐stream divergence. We detected patterns of population structure on a highly local spatial scale that could not be explained by isolation by distance or stream connectivity. Finally, we showed that individual thermal tolerance was positively correlated with genetic variation, suggesting that sites with increased genetic diversity may be better at tolerating novel stress. Our results highlight the importance of considering intraspecific variation in understanding population vulnerability and stress response. 
    more » « less