skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synergistic Effects of Temperature and Salinity on the Gene Expression and Physiology of Crassostrea virginica
Abstract The eastern oyster, Crassostrea virginica, forms reefs that provide critical services to the surrounding ecosystem. These reefs are at risk from climate change, in part because altered rainfall patterns may amplify local fluctuations in salinity, impacting oyster recruitment, survival, and growth. As in other marine organisms, warming water temperatures might interact with these changes in salinity to synergistically influence oyster physiology. In this study, we used comparative transcriptomics, measurements of physiology, and a field assessment to investigate what phenotypic changes C. virginica uses to cope with combined temperature and salinity stress in the Gulf of Mexico. Oysters from a historically low salinity site (Sister Lake, LA) were exposed to fully crossed temperature (20°C and 30°C) and salinity (25, 15, and 7 PSU) treatments. Using comparative transcriptomics on oyster gill tissue, we identified a greater number of genes that were differentially expressed (DE) in response to low salinity at warmer temperatures. Functional enrichment analysis showed low overlap between genes DE in response to thermal stress compared with hypoosmotic stress and identified enrichment for gene ontologies associated with cell adhesion, transmembrane transport, and microtubule-based process. Experiments also showed that oysters changed their physiology at elevated temperatures and lowered salinity, with significantly increased respiration rates between 20°C and 30°C. However, despite the higher energetic demands, oysters did not increase their feeding rate. To investigate transcriptional differences between populations in situ, we collected gill tissue from three locations and two time points across the Louisiana Gulf coast and used quantitative PCR to measure the expression levels of seven target genes. We found an upregulation of genes that function in osmolyte transport, oxidative stress mediation, apoptosis, and protein synthesis at our low salinity site and sampling time point. In summary, oysters altered their phenotype more in response to low salinity at higher temperatures as evidenced by a higher number of DE genes during laboratory exposure, increased respiration (higher energetic demands), and in situ differential expression by season and location. These synergistic effects of hypoosmotic stress and increased temperature suggest that climate change will exacerbate the negative effects of low salinity exposure on eastern oysters.  more » « less
Award ID(s):
1737170 1840903 1711319
PAR ID:
10102547
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
59
Issue:
2
ISSN:
1540-7063
Page Range / eLocation ID:
p. 306-319
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis The presence of standing genetic variation will play a role in determining a population's capacity to adapt to environmentally relevant stressors. In the Gulf of Mexico, extreme climatic events and anthropogenic changes to local hydrology will expose productive oyster breeding grounds to stressful low salinity conditions. We identified genetic variation for performance under low salinity (due to the combined effects of low salinity and genetic load) using a single-generation selection experiment on larvae from two populations of the eastern oyster, Crassostrea virginica. We used pool-sequencing to test for allele frequency differences at 152 salinity-associated genes for larval families pre- and post-low salinity exposure. Our results have implications for how evolutionary change occurs during early life history stages at environmentally relevant salinities. Consistent with observations of high genetic load observed in oysters, we demonstrate evidence for purging of deleterious alleles at the larval stage in C. virginica. In addition, we observe increases in allele frequencies at multiple loci, suggesting that natural selection for low salinity performance at the larval stage can act as a filter for genotypes found in adult populations. 
    more » « less
  2. Telesca, L (Ed.)
    Rapid environmental changes are predicted to impact shellfish abundance and their commercial value. The Eastern Oyster, Crassostrea virginica, a key foundation species with high environmental and commercial value has dramatically declined due to climate and anthropogenic impacts over the last century. Our current understanding of oyster vulnerability mostly stems from laboratory-based experiments but lacks studies in natural systems. Here, we investigated how shell production and composition of C. virginica are affected by natural salinity gradients under different temperature regimes. We studied variations in oyster shell shape, production, structure, composition, and organic matrix content in oysters from a temperate, Hudson River (NY), and subtropical, Galveston Bay (TX), estuary. parameters such as weight, area, density, chalk production, and organic matrix to see how the shells varied based on salinity and temperature. Our findings showed that Eastern oysters produced shells with higher chalk content under calcification-limiting environments (i.e., low temperature and low salinity). In comparison, shells with lower chalk content were produced in high predation environments (i.e., high temperatures and salinity). Temperate oyster's shell structure preferentially favored chemical protection against dissolution while subtropical oysters preferentially favored mechanical protection against predation. Oyster’s shell showed a strong capacity for protective responses under calcification- and predation-controlled environments. 
    more » « less
  3. Background Abundance of the commercially and ecologically important Eastern oyster, Crassostrea virginica , has declined across the US Eastern and Gulf coasts in recent decades, spurring substantial efforts to restore oyster reefs. These efforts are widely constrained by the availability, cost, and suitability of substrates to support oyster settlement and reef establishment. In particular, oyster shell is often the preferred substrate but is relatively scarce and increasingly expensive. Thus, there is a need for alternative oyster restoration materials that are cost-effective, abundant, and durable. Methods We tested the viability of two low-cost substrates—concrete and recycled blue crab ( Callinectes sapidus ) traps—in facilitating oyster recovery in a replicated 22-month field experiment at historically productive but now degraded intertidal oyster grounds on northwestern Florida’s Nature Coast. Throughout the trial, we monitored areal oyster cover on each substrate; at the end of the trial, we measured the densities of oysters by size class (spat, juvenile, and market-size) and the biomass and volume of each reef. Results Oysters colonized the concrete structures more quickly than the crab traps, as evidenced by significantly higher oyster cover during the first year of the experiment. By the end of the experiment, the concrete structures hosted higher densities of spat and juveniles, while the density of market-size oysters was relatively low and similar between treatments. The open structure of the crab traps led to the development of larger-volume reefs, while oyster biomass per unit area was similar between treatments. In addition, substrates positioned at lower elevations (relative to mean sea level) supported higher oyster abundance, size, and biomass than those less frequently inundated at higher elevations. Discussion Together, these findings indicate that both concrete and crab traps are viable substrates for oyster reef restoration, especially when placed at lower intertidal elevations conducive to oyster settlement and reef development. 
    more » « less
  4. Salinity conditions in oyster breeding grounds in the Gulf of Mexico are expected to drastically change due to increased precipitation from climate change and anthropogenic changes to local hydrology. We determined the capacity of the eastern oyster, Crassostrea virginica , to adapt via standing genetic variation or acclimate through transgenerational plasticity (TGP). We outplanted oysters to either a low- or medium-salinity site in Louisiana for 2 years. We then crossed adult parents using a North Carolina II breeding design, and measured body size and survival of larvae 5 dpf raised under low or ambient salinity. We found that TGP is unlikely to significantly contribute to low-salinity tolerance since we did not observe increased growth or survival in offspring reared in low salinity when their parents were also acclimated at a low-salinity site. However, we detected genetic variation for body size, with an estimated heritability of 0.68 ± 0.25 (95% CI). This suggests there is ample genetic variation for this trait to evolve, and that evolutionary adaptation is a possible mechanism through which oysters will persist with future declines in salinity. The results of this experiment provide valuable insights into successfully breeding low-salinity tolerance in this commercially important species. 
    more » « less
  5. Environmental history (regimes of water quality to which an organism has been exposed in the past) may influence how the physiology of eastern oysters Crassostrea virginica responds to future environmental conditions caused by climate change. Previous research has examined environmental history in a 1-dimensional framework, failing to capture environmental history complexity through space and time. In this study, we examined environmental history as a multi-faceted parameter, incorporating abiotic water quality components, such as temperature, pH, and salinity, that differ among locations. We also assessed how different lengths of environmental histories, defined as proximal and distal, affected oyster physiology and stress response. Finally, we compared the relative influence of abiotic components of environmental history on oyster physiology. We found that physiology and stress response are differentially affected by proximal and distal environmental history, demonstrating the importance of examining environmental history as a multi-faceted and dynamic parameter. Specifically, distal environmental history primarily influenced condition index and total antioxidant potential, while proximal environmental history primarily influenced glycogen content. Salinity of distal environmental history significantly shaped condition index, establishing salinity as a principal factor when considering acclimatization to variable environments. No water quality components were significant influences on glycogen and total antioxidant potential, providing opportunities for research on other components of environmental history. Identifying the temporal portion of oysters’ environmental history that influences physiology supports future efforts to predict population tolerance to climate change. Additionally, examining multiple abiotic and biotic components of environmental history can elucidate means of acclimatization to future environmental change. 
    more » « less