skip to main content

Title: Advancing an interdisciplinary framework to study seed dispersal ecology
Abstract Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
McConkey, Kim
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. McConkey, Kim (Ed.)
    Abstract Despite the importance of seed dispersal as a driving process behind plant community assembly, our understanding of the role of seed dispersal in plant population persistence and spread remains incomplete. As a result, our ability to predict the effects of global change on plant populations is hampered. We need to better understand the fundamental link between seed dispersal and population dynamics in order to make predictive generalizations across species and systems, to better understand plant community structure and function, and to make appropriate conservation and management responses related to seed dispersal. To tackle these important knowledge gaps, we established the CoDisperse Network and convened an interdisciplinary, NSF-sponsored Seed Dispersal Workshop in 2016, during which we explored the role of seed dispersal in plant population dynamics (NSF DEB Award # 1548194). In this Special Issue, we consider the current state of seed dispersal ecology and identify the following collaborative research needs: (i) the development of a mechanistic understanding of the movement process influencing dispersal of seeds; (ii) improved quantification of the relative influence of seed dispersal on plant fitness compared to processes occurring at other life history stages; (iii) an ability to scale from individual plants to ecosystems to quantify the influence of dispersal on ecosystem function; and (iv) the incorporation of seed dispersal ecology into conservation and management strategies. 
    more » « less
  2. Seed dispersal, or the movement of diaspores away from the parent location, is a multiscale, multipartner process that depends on the interaction of plant life history with vector movement and the environment. Seed dispersal underpins many important plant ecological and evolutionary processes such as gene flow, population dynamics, range expansion, and diversity. We review exciting new directions that the field of seed dispersal ecology and evolution has taken over the past 40 years. We provide an overview of the ultimate causes of dispersal and the consequences of this important process for plant population and community dynamics. We also discuss several emergent unifying frameworks that are being used to study dispersal and describe how they can be integrated to provide a more mechanistic understanding of dispersal.

    more » « less
  3. Ecologists are increasingly using macrosystems approaches to understand population, community, and ecosystem dynamics across interconnected spatial and temporal scales. Consequently, integrating macrosystems skills, including simulation modeling and sensor data analysis, into undergraduate and graduate curricula is needed to train future environmental biologists. Through the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration) program, we developed four teaching modules to introduce macrosystems ecology to ecology and biology students. Modules combine high-frequency sensor data from GLEON (Global Lake Ecological Observatory Network) and NEON (National Ecological Observatory Network) sites with ecosystem simulation models. Pre- and post-module assessments of 319 students across 24 classrooms indicate that hands-on, inquiry-based modules increase students’ understanding of macrosystems ecology, including complex processes that occur across multiple spatial and temporal scales. Following module use, students were more likely to correctly define macrosystems concepts, interpret complex data visualizations and apply macrosystems approaches in new contexts. In addition, there was an increase in student’s self-perceived proficiency and confidence using both long-term and high-frequency data; key macrosystems ecology techniques. Our results suggest that integrating short (1–3 h) macrosystems activities into ecology courses can improve students’ ability to interpret complex and non-linear ecological processes. In addition, our study serves as one of the first documented instances for directly incorporating concepts in macrosystems ecology into undergraduate and graduate ecology and biology curricula. 
    more » « less
  4. Abstract

    Dispersal is one of the primary mechanisms by which organisms adapt to spatial and temporal variation in the environment. Theory predicts that increasing spatiotemporal variation drives selection for offspring dispersal away from their natal habitat and one another. However, due to inherent difficulties in measuring dispersal in plant systems, there are few empirical tests of the extent to which this hypothesis can explain variation in seed dispersal strategies.

    In this study, we characterized and compared the dispersal patterns of three closely related plant species that segregate across gradients in spatiotemporal variation in seasonal wetlands.

    We tracked individual seeds as they dispersed in their natural habitats to measure seed dispersal distance (the distance travelled from the maternal plant) and inter‐seed spread (distances between dispersed seeds) and to identify the plant traits causing within‐species variation in seed dispersal. We also evaluated the seed traits causing within‐species variation in seed flight distance and terminal velocity in a wind tunnel and a drop tube, respectively.

    We found that average seed dispersal distance was lowest in the species that occupies the most spatiotemporally variable habitat, contradicting our predictions; however, inter‐seed spread was lowest in the species from the least variable habitat, which aligned with our expectations.

    The maternal plant and seed traits explaining intraspecific variation in seed dispersal varied among species as well as the method used to measure dispersal potential. Two traits had non‐intuitive effects on dispersal, including pappus size, which reduced seed flight distance in two of the focal taxa.

    Overall, our results indicate that the differences we detected in seed dispersal among three closely related plant taxa can be only partially explained by current patterns of environmental variability in their respective habitats and that the traits driving within‐species variation in seed dispersal can evolve rapidly and change with the environmental context in which they are measured.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  5. Abstract Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption. 
    more » « less