skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Macrosystems EDDIE Teaching Modules Increase Students’ Ability to Define, Interpret, and Apply Concepts in Macrosystems Ecology
Ecologists are increasingly using macrosystems approaches to understand population, community, and ecosystem dynamics across interconnected spatial and temporal scales. Consequently, integrating macrosystems skills, including simulation modeling and sensor data analysis, into undergraduate and graduate curricula is needed to train future environmental biologists. Through the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration) program, we developed four teaching modules to introduce macrosystems ecology to ecology and biology students. Modules combine high-frequency sensor data from GLEON (Global Lake Ecological Observatory Network) and NEON (National Ecological Observatory Network) sites with ecosystem simulation models. Pre- and post-module assessments of 319 students across 24 classrooms indicate that hands-on, inquiry-based modules increase students’ understanding of macrosystems ecology, including complex processes that occur across multiple spatial and temporal scales. Following module use, students were more likely to correctly define macrosystems concepts, interpret complex data visualizations and apply macrosystems approaches in new contexts. In addition, there was an increase in student’s self-perceived proficiency and confidence using both long-term and high-frequency data; key macrosystems ecology techniques. Our results suggest that integrating short (1–3 h) macrosystems activities into ecology courses can improve students’ ability to interpret complex and non-linear ecological processes. In addition, our study serves as one of the first documented instances for directly incorporating concepts in macrosystems ecology into undergraduate and graduate ecology and biology curricula.  more » « less
Award ID(s):
1926050 1737424 1753639 1933016 1702506 1933102
PAR ID:
10304367
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Education Sciences
Volume:
11
Issue:
8
ISSN:
2227-7102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Simulation models are increasingly used by ecologists to study complex, ecosystem‐scale phenomena, but integrating ecosystem simulation modeling into ecology undergraduate and graduate curricula remains rare. Engaging ecology students with ecosystem simulation models may enable students to conduct hypothesis‐driven scientific inquiry while also promoting their use of systems thinking, but it remains unknown how using hands‐on modeling activities in the classroom affects student learning. Here, we developed short (3‐hr) teaching modules as part of the Macrosystems EDDIE (Environmental Data‐Driven Inquiry & Exploration) program that engage students with hands‐on ecosystem modeling in the R statistical environment. We embedded the modules into in‐person ecology courses at 17 colleges and universities and assessed student perceptions of their proficiency and confidence before and after working with models. Across all 277 undergraduate and graduate students who participated in our study, completing one Macrosystems EDDIE teaching module significantly increased students' self‐reported proficiency, confidence, and likely future use of simulation models, as well as their perceived knowledge of ecosystem simulation models. Further, students were significantly more likely to describe that an important benefit of ecosystem models was their “ease of use” after completing a module. Interestingly, students were significantly more likely to provide evidence of systems thinking in their assessment responses about the benefits of ecosystem models after completing a module, suggesting that these hands‐on ecosystem modeling activities may increase students’ awareness of how individual components interact to affect system‐level dynamics. Overall, Macrosystems EDDIE modules help students gain confidence in their ability to use ecosystem models and provide a useful method for ecology educators to introduce undergraduate and graduate students to ecosystem simulation modeling using in‐person, hybrid, or virtual modes of instruction. 
    more » « less
  2. Ecological forecasting is an emerging approach to estimate the future state of an ecological system with uncertainty, allowing society to better manage ecosystem services. Ecological forecasting is a core mission of the U.S. National Ecological Observatory Network (NEON) and several federal agencies, yet, to date, forecasting training has focused on graduate students, representing a gap in undergraduate ecology curricula. In response, we developed a teaching module for the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration; MacrosystemsEDDIE.org) educational program to introduce ecological forecasting to undergraduate students through an interactive online tool built with R Shiny. To date, we have assessed this module, “Introduction to Ecological Forecasting,” at ten universities and two conference workshops with both undergraduate and graduate students (N = 136 total) and found that the module significantly increased undergraduate students’ ability to correctly define ecological forecasting terms and identify steps in the ecological forecasting cycle. Undergraduate and graduate students who completed the module showed increased familiarity with ecological forecasts and forecast uncertainty. These results suggest that integrating ecological forecasting into undergraduate ecology curricula will enhance students’ abilities to engage and understand complex ecological concepts. 
    more » « less
  3. Abstract Communicating and interpreting uncertainty in ecological model predictions is notoriously challenging, motivating the need for new educational tools, which introduce ecology students to core concepts in uncertainty communication. Ecological forecasting, an emerging approach to estimate future states of ecological systems with uncertainty, provides a relevant and engaging framework for introducing uncertainty communication to undergraduate students, as forecasts can be used as decision support tools for addressing real‐world ecological problems and are inherently uncertain. To provide critical training on uncertainty communication and introduce undergraduate students to the use of ecological forecasts for guiding decision‐making, we developed a hands‐on teaching module within the Macrosystems Environmental Data‐Driven Inquiry and Exploration (EDDIE;MacrosystemsEDDIE.org) educational program. Our module used an active learning approach by embedding forecasting activities in an R Shiny application to engage ecology students in introductory data science, ecological modeling, and forecasting concepts without needing advanced computational or programming skills. Pre‐ and post‐module assessment data from more than 250 undergraduate students enrolled in ecology, freshwater ecology, and zoology courses indicate that the module significantly increased students' ability to interpret forecast visualizations with uncertainty, identify different ways to communicate forecast uncertainty for diverse users, and correctly define ecological forecasting terms. Specifically, students were more likely to describe visual, numeric, and probabilistic methods of uncertainty communication following module completion. Students were also able to identify more benefits of ecological forecasting following module completion, with the key benefits of using forecasts for prediction and decision‐making most commonly described. These results show promise for introducing ecological model uncertainty, data visualizations, and forecasting into undergraduate ecology curricula via software‐based learning, which can increase students' ability to engage and understand complex ecological concepts. 
    more » « less
  4. Abstract Data science skills (e.g., analyzing, modeling, and visualizing large data sets) are increasingly needed by undergraduates in the life sciences. However, a lack of both student and instructor confidence in data science skills presents a barrier to their inclusion in undergraduate curricula. To reduce this barrier, we developed four teaching modules in the Macrosystems EDDIE (for environmental data-driven inquiry and exploration) program to introduce undergraduate students and instructors to ecological forecasting, an emerging subdiscipline that integrates multiple data science skills. Ecological forecasting aims to improve natural resource management by providing future predictions of ecosystems with uncertainty. We assessed module efficacy with 596 students and 26 instructors over 3 years and found that module completion increased students’ confidence in their understanding of ecological forecasting and instructors’ likelihood to work with long-term, high-frequency sensor network data. Our modules constitute one of the first formalized data science curricula on ecological forecasting for undergraduates. 
    more » « less
  5. This EDI data package contains instructional materials necessary to teach Macrosystems EDDIE Module 7: Using Data to Improve Ecological Forecasts, a ~3-hour educational module for undergraduates. Ecological forecasting is an emerging approach that provides an estimate of the future state of an ecological system with uncertainty, allowing society to prepare for changes in important ecosystem services. To be useful for management, ecological forecasts need to be both accurate enough for managers to be able to rely on them for decision-making and include a representation of forecast uncertainty, so managers can properly interpret the probability of future events. To improve forecast accuracy, forecasts can be updated with observational data once they become available, a process known as data assimilation. Recent improvements in environmental sensor technology and an increase in the number of sensors deployed in ecosystems have increased the availability of data for assimilation to develop and improve forecasts for natural resource management. In this module, students will explore how assimilating data with different amounts of observation uncertainty and at different temporal frequencies affects forecasts of lake water quality, using data from the U.S. National Ecological Observatory Network (NEON). The flexible, three-part (A-B-C) structure of this module makes it adaptable to a range of student levels and course structures. There are two versions of the module: an R Shiny application which does not require students to code, and an RMarkdown version which requires students to read and alter R code to complete module activities. The R Shiny application is published to shinyapps.io and is available at the following link: https://macrosystemseddie.shinyapps.io/module7/. GitHub repositories are available for both the R Shiny (https://github.com/MacrosystemsEDDIE/module7) and RMarkdown versions (https://github.com/MacrosystemsEDDIE/module7_R) of the module, and both code repositories have been published with DOIs to Zenodo (R Shiny version at DOI 10.5281/zenodo.10903839 and RMarkdown version at DOI 10.5281/zenodo.10909589). Readers are referred to the module landing page for additional information (https://serc.carleton.edu/eddie/teaching_materials/modules/module7.html). 
    more » « less