skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growth Assessment of Native Tree Species from the Southwestern Brazilian Amazonia by Post-AD 1950 14C Analysis: Implications for Tropical Dendroclimatology Studies and Atmospheric 14C Reconstructions
Tree-ring width chronologies of cedro (Cedrela fissilis Vell.) (1875 to 2018), jatobá (Hymenaea courbaril L.) (1840 to 2018) and roxinho Peltogyne paniculata Benth.) (1910 to 2018) were developed by dendrochronological techniques in the southern Amazon Basin. Acceptable statistics for the tree-ring chronologies were obtained, and annual calendar dates were assigned. Due to the lack of long-term chronologies for use in paleoclimate reconstructions in degraded forest areas, dendrochronological dating was validated by 14C analysis. Tree-rings selected for analysis corresponded to 1957, 1958, 1962, 1963, 1965, 1971, and 1972. Those are critical calendar years in which atmospheric 14C changes were the highest, and therefore their tree-ring cellulose extracts 14C signatures when in alignment with existing post-AD 1950 atmospheric 14C atmospheric curves would indicate annual periodicity. Throughout our correlated calendar years and post-AD 1950 14C signatures, we indicate that H. courbaril shows an erratic sequence of wood ages. The other two tree species, C. fissilis and P. paniculata, are annual in nature and can be used successfully as paleoclimate proxies. Moreover, due to the sampling site’s strategic location in relation to the Tropical Low-Pressure Belt over South America, these trees can be used to enhance the limited amount of observational data in Southern Hemisphere atmospheric 14C calibration curves.  more » « less
Award ID(s):
1903690
PAR ID:
10324943
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Forests
Volume:
12
Issue:
9
ISSN:
1999-4907
Page Range / eLocation ID:
1177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we present a comprehensive atmospheric radiocarbon (14C) record spanning from 1940 to 2016, derived from 77 single tree rings of Cedrela odorata located in the Eastern Amazon Basin (EAB). This record, comprising 175 high-precision 14C measurements obtained through accelerator mass spectrometry (AMS), offers a detailed chronology of post-1950 CE (Common Era) 14C fluctuations in the Tropical Low-Pressure Belt (TLPB). To ensure accuracy and reliability, we included 14C-AMS results from intra-annual successive cuts of the tree rings associated to the calendar years 1962 and 1963 and conducted interlaboratory comparisons. In addition, 14C concentrations in 1962 and 1963 single-year cuts also allowed to verify tissue growth seasonality. The strategic location of the tree, just above the Amazon River and estuary areas, prevented the influence of local fossil-CO2 emissions from mining and trade activities in the Central Amazon Basin on the 14C record. Our findings reveal a notable increase in 14C from land-respired CO2 starting in the 1970s, a decade earlier than previously predicted, followed by a slight decrease after 2000, signaling a transition towards the fossil fuel era. This shift is likely attributed to changes in reservoir sources or global atmospheric dynamics. The EAB 14C record, when compared with a shorter record from Muna Island, Indonesia, highlights regional differences and contributes to a more nuanced understanding of global 14C variations at low latitudes. This study not only fills critical spatial gaps in existing 14C compilations but also aids in refining the demarcation of 14C variations over South America. The extended tree-ring 14C record from the EAB is pivotal for reevaluating global patterns, particularly in the context of the current global carbon budget, and underscores the importance of tropical regions in understanding carbon-climate feedbacks. 
    more » « less
  2. In this study, we present a comprehensive atmospheric radiocarbon (14C) record spanning from 1940 to 2016, derived from 77 single tree rings of Cedrela odorata located in the Eastern Amazon Basin (EAB). This record, comprising 175 high-precision 14C measurements obtained through accelerator mass spectrometry (AMS), offers a detailed chronology of post-1950 CE (Common Era) 14C fluctuations in the Tropical Low-Pressure Belt (TLPB). To ensure accuracy and reliability, we included 14C-AMS results from intra-annual successive cuts of the tree rings associated to the calendar years 1962 and 1963 and conducted interlaboratory comparisons. In addition, 14C concentrations in 1962 and 1963 single-year cuts also allowed to verify tissue growth seasonality. The strategic location of the tree, just above the Amazon River and estuary areas, prevented the influence of local fossil-CO2 emissions from mining and trade activities in the Central Amazon Basin on the 14C record. Our findings reveal a notable increase in 14C from land-respired CO2 starting in the 1970s, a decade earlier than previously predicted, followed by a slight decrease after 2000, signaling a transition towards the fossil fuel era. This shift is likely attributed to changes in reservoir sources or global atmospheric dynamics. The EAB 14C record, when compared with a shorter record from Muna Island, Indonesia, highlights regional differences and contributes to a more nuanced understanding of global 14C variations at low latitudes. This study not only fills critical spatial gaps in existing 14C compilations but also aids in refining the demarcation of 14C variations over South America. The extended tree-ring 14C record from the EAB is pivotal for reevaluating global patterns, particularly in the context of the current global carbon budget, and underscores the importance of tropical regions in understanding carbon-climate feedbacks. 
    more » « less
  3. The science of tropical dendrochronology is now emerging in regions where tree-ring dating had previously not been considered possible. Here, we combine wood anatomical microsectioning techniques and radiocarbon analysis to produce the first tree-ring chronology with verified annual periodicity for a new dendrochronological species, Neltuma alba (commonly known as “algarrobo blanco”) in the tropical Andes of Bolivia. First, we generated a preliminary chronology composed of six trees using traditional dendrochronological methods (i.e., cross-dating). We then measured the 14 C content on nine selected tree rings from two samples and compared them with the Southern Hemisphere (SH) atmospheric 14 C curves, covering the period of the bomb 14 C peak. We find consistent offsets of 5 and 12 years, respectively, in the calendar dates initially assigned, indicating that several tree rings were missing in the sequence. In order to identify the tree-ring boundaries of the unidentified rings we investigated further by analyzing stem wood microsections to examine anatomical characteristics. These anatomical microsections revealed the presence of very narrow terminal parenchyma defining several tree-ring boundaries within the sapwood, which was not visible in sanded samples under a stereomicroscope. Such newly identified tree rings were consistent with the offsets shown by the radiocarbon analysis and allowed us to correct the calendar dates of the initial chronology. Additional radiocarbon measurements over a new batch of rings of the corrected dated samples resulted in a perfect match between the dendrochronological calendar years and the 14 C dating, which is based on good agreement between the tree-ring 14 C content and the SH 14 C curves. Correlations with prior season precipitation and temperature reveal a strong legacy effect of climate conditions prior to the current Neltuma alba growing season. Overall, our study highlights much potential to complement traditional dendrochronology in tree species with challenging tree-ring boundaries with wood anatomical methods and 14 C analyses. Taken together, these approaches confirm that Neltuma alba can be accurately dated and thereby used in climatic and ecological studies in tropical and subtropical South America. 
    more » « less
  4. ABSTRACT Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals. 
    more » « less
  5. Abstract A limitation in fine-tuned tree-ring radiocarbon (14C) data is normally associated with overall data uncertainty. Tree-ring14C data variance as a result of sample heterogeneity can be reduced by adopting best practices at the time of sample collection and subsequent preparation and analysis. Variance-reduction of14C data was achieved by meticulous sample handling during increment core or cross-sectional cuttings, in-laboratory wood reductions, and cellulose fiber homogenization of whole rings. To demonstrate the performance of those procedures to final14C results, we took advantage of the replicated data from assigned calendar years of two Pantropical post-1950 AD tree-ring14C reconstructions. TwoCedrela fissilisVell. trees spaced 22.5 km apart, and two trees of this species together with onePeltogyne paniculataBenth tree spaced 0.2 to 5 km apart were sampled in a tropical dry and moist forest, respectively. Replicate14C data were then obtained from grouped tree-ring samples from each site. A total of 88% of the replicated14C results fell into a remarkably consistent precision/accuracy range of 0.3% or less, even though multiple tree species were used as pairs/sets. This finding illustrates how adopting a few simple strategies, in tandem with already established chemical extraction procedures and high-precision14C analysis, can improve14C data results of tropical trees. 
    more » « less