skip to main content


Title: Radiocarbon and wood anatomy as complementary tools for generating tree-ring records in Bolivia
The science of tropical dendrochronology is now emerging in regions where tree-ring dating had previously not been considered possible. Here, we combine wood anatomical microsectioning techniques and radiocarbon analysis to produce the first tree-ring chronology with verified annual periodicity for a new dendrochronological species, Neltuma alba (commonly known as “algarrobo blanco”) in the tropical Andes of Bolivia. First, we generated a preliminary chronology composed of six trees using traditional dendrochronological methods (i.e., cross-dating). We then measured the 14 C content on nine selected tree rings from two samples and compared them with the Southern Hemisphere (SH) atmospheric 14 C curves, covering the period of the bomb 14 C peak. We find consistent offsets of 5 and 12 years, respectively, in the calendar dates initially assigned, indicating that several tree rings were missing in the sequence. In order to identify the tree-ring boundaries of the unidentified rings we investigated further by analyzing stem wood microsections to examine anatomical characteristics. These anatomical microsections revealed the presence of very narrow terminal parenchyma defining several tree-ring boundaries within the sapwood, which was not visible in sanded samples under a stereomicroscope. Such newly identified tree rings were consistent with the offsets shown by the radiocarbon analysis and allowed us to correct the calendar dates of the initial chronology. Additional radiocarbon measurements over a new batch of rings of the corrected dated samples resulted in a perfect match between the dendrochronological calendar years and the 14 C dating, which is based on good agreement between the tree-ring 14 C content and the SH 14 C curves. Correlations with prior season precipitation and temperature reveal a strong legacy effect of climate conditions prior to the current Neltuma alba growing season. Overall, our study highlights much potential to complement traditional dendrochronology in tree species with challenging tree-ring boundaries with wood anatomical methods and 14 C analyses. Taken together, these approaches confirm that Neltuma alba can be accurately dated and thereby used in climatic and ecological studies in tropical and subtropical South America.  more » « less
Award ID(s):
1703035 1903690 1903687 1702789
NSF-PAR ID:
10409994
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
14
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The new IntCal20 radiocarbon record continues decades of successful practice by employing one calibration curve as an approximation for different regions across the hemisphere. Here we investigate three radiocarbon time-series of archaeological and historical importance from the Mediterranean-Anatolian region, which indicate, or may include, offsets from IntCal20 (~0–2214C years). While modest, these differences are critical for our precise understanding of historical and environmental events across the Mediterranean Basin and Near East. Offsets towards older radiocarbon ages in Mediterranean-Anatolian wood can be explained by a divergence between high-resolution radiocarbon dates from the recent generation of accelerator mass spectrometry (AMS) versus dates from previous technologies, such as low-level gas proportional counting (LLGPC) and liquid scintillation spectrometry (LSS). However, another reason is likely differing growing season lengths and timings, which would affect the seasonal cycle of atmospheric radiocarbon concentrations recorded in different geographic zones. Understanding and correcting these offsets is key to the well-defined calendar placement of a Middle Bronze Age tree-ring chronology. This in turn resolves long-standing debate over Mesopotamian chronology in the earlier second millennium BCE. Last but not least, accurate dating is needed for any further assessment of the societal and environmental impact of the Thera/Santorini volcanic eruption.

     
    more » « less
  2. Tree-ring width chronologies of cedro (Cedrela fissilis Vell.) (1875 to 2018), jatobá (Hymenaea courbaril L.) (1840 to 2018) and roxinho Peltogyne paniculata Benth.) (1910 to 2018) were developed by dendrochronological techniques in the southern Amazon Basin. Acceptable statistics for the tree-ring chronologies were obtained, and annual calendar dates were assigned. Due to the lack of long-term chronologies for use in paleoclimate reconstructions in degraded forest areas, dendrochronological dating was validated by 14C analysis. Tree-rings selected for analysis corresponded to 1957, 1958, 1962, 1963, 1965, 1971, and 1972. Those are critical calendar years in which atmospheric 14C changes were the highest, and therefore their tree-ring cellulose extracts 14C signatures when in alignment with existing post-AD 1950 atmospheric 14C atmospheric curves would indicate annual periodicity. Throughout our correlated calendar years and post-AD 1950 14C signatures, we indicate that H. courbaril shows an erratic sequence of wood ages. The other two tree species, C. fissilis and P. paniculata, are annual in nature and can be used successfully as paleoclimate proxies. Moreover, due to the sampling site’s strategic location in relation to the Tropical Low-Pressure Belt over South America, these trees can be used to enhance the limited amount of observational data in Southern Hemisphere atmospheric 14C calibration curves. 
    more » « less
  3. Biehl, Peter F. (Ed.)
    The timeframe of Indigenous settlements in Northeast North America in the 15 th -17 th centuries CE has until very recently been largely described in terms of European material culture and history. An independent chronology was usually absent. Radiocarbon dating has recently begun to change this conventional model radically. The challenge, if an alternative, independent timeframe and history is to be created, is to articulate a high-resolution chronology appropriate and comparable with the lived histories of the Indigenous village settlements of the period. Improving substantially on previous initial work, we report here high-resolution defined chronologies for the three most extensively excavated and iconic ancestral Kanienʼkehá꞉ka (Mohawk) village sites in New York (Smith-Pagerie, Klock and Garoga), and a fourth early historic Indigenous site, Brigg’s Run, and re-assess the wider chronology of the Mohawk River Valley in the mid-15 th to earlier 17 th centuries. This new chronology confirms initial suggestions from radiocarbon that a wholesale reappraisal of past assumptions is necessary, since our dates conflict completely with past dates and the previously presumed temporal order of these three iconic sites. In turn, a wider reassessment of northeastern North American early history and re-interpretation of Atlantic connectivities in the later 15 th through early 17 th centuries is required. Our new closely defined date ranges are achieved employing detailed archival analysis of excavation records to establish the contextual history for radiocarbon-dated samples from each site, tree-ring defined short time series from wood charcoal samples fitted against the radiocarbon calibration curve (‘wiggle-matching’), and Bayesian chronological modelling for each of the individual sites integrating all available prior knowledge and radiocarbon dating probabilities. We define (our preferred model) most likely (68.3% highest posterior density) village occupation ranges for Smith-Pagerie of ~1478–1498, Klock of ~1499–1521, Garoga of ~1550–1582, and Brigg’s Run of ~1619–1632. 
    more » « less
  4. Calendar-dated tree-ring sequences offer an unparalleled resource for high-resolution paleoenvironmental reconstruction. Where such records exist for a few limited geographic regions over the last 8,000 to 12,000 years, they have proved invaluable for creating precise and accurate timelines for past human and environmental interactions. To expand such records across new geographic territory or extend data for certain regions further backward in time, new applications must be developed to secure “floating” (not yet absolutely dated) tree-ring sequences, which cannot be assigned single-calendar year dates by standard dendrochronological techniques. This study develops two approaches to this problem for a critical floating tree-ring chronology from the East Mediterranean Bronze–Iron Age. The chronology is more closely fixed in time using annually resolved patterns of 14 C, modulated by cosmic radiation, between 1700 and 1480 BC. This placement is then tested using an anticorrelation between calendar-dated tree-ring growth responses to climatically effective volcanism in North American bristlecone pine and the Mediterranean trees. Examination of the newly dated Mediterranean tree-ring sequence between 1630 and 1500 BC using X-ray fluorescence revealed an unusual calcium anomaly around 1560 BC. While requiring further replication and analysis, this anomaly merits exploration as a potential marker for the eruption of Thera. 
    more » « less
  5. Abstract Along the coasts of northern Alaska, in a treeless tundra environment, the primary wood resource for coastal populations is driftwood, a seasonal and exogenous resource carried by the major rivers of western North America. The potential of Alaskan coastal archaeological wood for tree-ring research was first assessed in the 1940s by archaeologist and tree-ring research pioneer J. L. Giddings. Despite his success, the difficulties of dendrochronological studies on driftwood and the development of radiocarbon dating during the 1950s resulted in the near-abandonment of dendrochronology to precisely date archaeological sites and build long sequences using archaeological wood in Alaska. In this study, we explored the possibilities and limitations of standard ring-width dendrochronological methods for dating Alaskan coastal archaeological wood. We focus on the site of Pingusugruk, a late Thule site (15th–17th CE ) located at Point Franklin, northern Alaska. The preliminary results have been obtained from the standard dendrochronological analyses of 40 timber cross-sections from two semi-subterranean houses at Pingusugruk. We cross-correlated individual ring-width series and built floating chronologies between houses before cross-dating them with existing regional 1000-year-long master chronologies from the Kobuk and Mackenzie rivers (available on the International Tree-Ring Databank, ITRDB ). Additional work on various dendro-archaeological collections using an interdisciplinary approach (geochemical analyses of oxygen isotopes and radiocarbon dating) will help develop and expand regional tree-ring chronologies and climatic tree-ring sequences in Alaska. 
    more » « less