skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Superconducting properties in doped 2M-WS 2 from first principles
A new member of the transition metal dichalcogenide (TMD) family, 2M-WS 2, has been recently discovered and shown to display superconductivity with a critical temperature (Tc) of 8.8 K, the highest Tc among superconducting TMDs at ambient pressure. Using first-principles calculations combined with the Migdal-Eliashberg formalism, we explore how the superconducting properties of 2M-WS 2 can be enhanced through doping. Mo, Nb, and Ta are used as dopants at the W sites, while Se is used at the S sites. We demonstrate that the monotonous decrease in the Tc observed experimentally for Mo and Se doping is due to the decrease in density of states at the Fermi level and the electron–phonon coupling of the low-energy phonons. In addition, we find that a noticeable increase in the electron–phonon coupling could be achieved when doping with Nb and Ta, leading to an enhancement of the Tc of up to 50% compared to the undoped compound.  more » « less
Award ID(s):
2035518
PAR ID:
10324965
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Materials Chemistry C
ISSN:
2050-7526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The highest ambient‐pressure Tc among binary compounds is 40 K (MgB2). Higher Tc is achieved in high‐pressure hydrides or multielement cuprates. Alternatively, are explored superconducting properties of binary, metastable sub‐oxides, that may emerge under extremely low oxygen partial pressure. The emphasis is on the rock‐salt structure, which is known to promote superconductivity, and exploring AlO, ScO, TiO, and NbO. Dynamic lattice stability is achieved by introducing metal and oxygen vacancies in the fashion of Nb1−xO1−x‐type structure (x = ¼). The electron‐phonon (e‐ph) coupling is remarkably large in Al1−xO1−xand Ti1−xO1−x(λ ≈ 2 at x = ¼), with Tc ≈ 35 K according to the Allen–Dynes equation. Significantly, the coupling strength is comparable to that in high‐pressure hydrides, yet, in contrast to hydrides and MgB2, the coupling is largely driven by low frequency phonons. Sc1−xO1−xand Nb1−xO1−xshow significantly smaller λ and Tc. Further, hydrogen intercalation to boost λ and Tc is investigated. Only Ti1−x(O1−xHx) and Nb1−x(O1−xHx) are dynamically stable upon intercalation, where H, respectively, decreases and increases Tc. The effect of H doping on electronic structure and Tc is discussed. Altogether, the study suggests that metal sub‐oxides are promising compounds to achieve strong e‐ph coupling at ambient pressure. 
    more » « less
  2. Abstract The investigation of exotic properties in two-dimensional (2D) topological superconductors has garnered increasing attention in condensed matter physics, particularly for applications in topological qubits. Despite this interest, a reliable way of fabricating topological Josephson junctions (JJs) utilizing topological superconductors has yet to be demonstrated. Controllable structural phase transition presents a unique approach to achieving topological JJs in atomically thin 2D topological superconductors. In this work, we report the pioneering demonstration of a structural phase transition from the superconducting to the semiconducting phase in the 2D topological superconductor 2M-WS2. We reveal that the metastable 2M phase of WS2remains stable in ambient conditions but transitions to the 2H phase when subjected to temperatures above 150 °C. We further locally induced the 2H phase within 2M-WS2nanolayers using laser irradiation. Notably, the 2H phase region exhibits a hexagonal shape, and scanning tunneling microscopy uncovers an atomically sharp crystal structural transition between the 2H and 2M phase regions. Moreover, the 2M to 2H phase transition can be induced at the nanometer scale by a 200 kV electron beam. The electrical transport measurements further confirmed the superconductivity of the pristine 2M-WS2and the semiconducting behavior of the laser-irradiated 2M-WS2. Our results establish a novel approach for controllable topological phase change in 2D topological superconductors, significantly impacting the development of atomically scaled planar topological JJs. 
    more » « less
  3. Wafer-scale synthesis of p-type TMD films is critical for its commercialization in next-generation electro/optoelectronics. In this work, wafer-scale intrinsic n-type WS2films and in situ Nb-doped p-type WS2films were synthesized through atomic layer deposition (ALD) on 8-inchα-Al2O3/Si wafers, 2-inch sapphire, and 1 cm2GaN substrate pieces. The Nb doping concentration was precisely controlled by altering cycle number of Nb precursor and activated by postannealing. WS2n-FETs and Nb-doped p-FETs with different Nb concentrations have been fabricated using CMOS-compatible processes. X-ray photoelectron spectroscopy, Raman spectroscopy, and Hall measurements confirmed the effective substitutional doping with Nb. The on/off ratio and electron mobility of WS2n-FET are as high as 105and 6.85 cm2 V-1 s-1, respectively. In WS2p-FET with 15-cycle Nb doping, the on/off ratio and hole mobility are 10 and 0.016 cm2 V-1 s-1, respectively. The p-n structure based on n- and p- type WS2films was proved with a 104rectifying ratio. The realization of controllablein situNb-doped WS2films paved a way for fabricating wafer-scale complementary WS2FETs. 
    more » « less
  4. Abstract The Zintl compound TlInTe2is an intriguing material because of its outstanding thermoelectric properties at ambient pressure. Interestingly, it has recently been found that TlInTe2exhibits a V-shape dependence of the superconducting critical temperature (Tc) under increasing pressure, which has been linked to the reversed behavior of the Raman active Agphonon mode and anharmonic effects. In this study, we have performed first-principles calculations of the electron-phonon interactions and the superconducting properties of TlInTe2in order to understand this unusual pressure-induced response. In contrast to experiment, we find a dome-shaped pressure-induced dependence ofTcwith a maximum value of 0.23 K at 18 GPa, significantly lower than the experimental results. Electron doping has the potential to adjust theTcto fall within the experimental range, but it necessitates considerably high levels of doping. Furthermore, our analysis of the phonon spectra and phonon lifetimes, including anharmonic effects, show that anharmonicity is unlikely to influence the superconducting properties of TlInTe2. It remains an open question whether there is indeed an unusual V-shapeTcdependence with pressure or whether the phonon-mediated theory of superconductivity used here breaks down in this system. 
    more » « less
  5. ReMo binary alloy films with a maximum Mo content of 25 at. % are successfully electrodeposited using high concentration acetate solutions in the presence of citric acid. The electrochemical behavior of the ReMo alloy is studied using cyclic voltammetry and anodic stripping methods. Different techniques, including electron microscopy, x-ray diffraction, and four-point probe resistance measurements at cryogenic temperature, are used to characterize the surface morphology, crystal structure, and superconducting critical temperature of alloys, respectively. While all films exhibit a crystalline hcp phase after 700 °C annealing, the film with the highest 25 at. % Mo content shows a second crystalline cubic phase. Mo doping preserves the enhanced superconducting transition temperature (Tc) in electrodeposited amorphous Re films and improves the stability of Tc against thermal annealing at a temperature of 200 °C. This is the first successful demonstration to use a dopant to stabilize the enhanced Tc of electrodeposited films, enabling the fabrication and operation of superconducting connectors above the intrinsic Tc of the materials. 
    more » « less