Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Migdal-Eliashberg theory is one of the state-of-the-art methods for describing conventional superconductors from first principles. However, widely used implementations assume a constant density of states around the Fermi level, which hinders a proper description of materials with distinct features in its vicinity. Here, we present an implementation of the Migdal-Eliashberg theory within the EPW code that considers the full electronic structure and accommodates scattering processes beyond the Fermi surface. To significantly reduce computational costs, we introduce a non-uniform sampling scheme along the imaginary axis. We demonstrate the power of our implementation by applying it to the sodalite-like clathrates YH6and CaH6, and to the covalently-bonded H3S and D3S. Furthermore, we investigate the effect of maximizing the density of states at the Fermi level in doped H3S and BaSiH8within the full-bandwidth treatment compared to the constant-density-of-states approximation. Our findings highlight the importance of this advanced treatment in such complex materials.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The Zintl compound TlInTe2is an intriguing material because of its outstanding thermoelectric properties at ambient pressure. Interestingly, it has recently been found that TlInTe2exhibits a V-shape dependence of the superconducting critical temperature (Tc) under increasing pressure, which has been linked to the reversed behavior of the Raman active Agphonon mode and anharmonic effects. In this study, we have performed first-principles calculations of the electron-phonon interactions and the superconducting properties of TlInTe2in order to understand this unusual pressure-induced response. In contrast to experiment, we find a dome-shaped pressure-induced dependence ofTcwith a maximum value of 0.23 K at 18 GPa, significantly lower than the experimental results. Electron doping has the potential to adjust theTcto fall within the experimental range, but it necessitates considerably high levels of doping. Furthermore, our analysis of the phonon spectra and phonon lifetimes, including anharmonic effects, show that anharmonicity is unlikely to influence the superconducting properties of TlInTe2. It remains an open question whether there is indeed an unusual V-shapeTcdependence with pressure or whether the phonon-mediated theory of superconductivity used here breaks down in this system.more » « less
-
Abstract Ising superconductivity, observed in NbSe2and similar materials, has generated tremendous interest. Recently, attention was called to the possible role that spin fluctuations (SF) play in this phenomenon, in addition to the dominant electron–phonon coupling (EPC); the possibility of a predominantly triplet state was discussed and led to a conjecture of viable singlet–triplet Leggett oscillations. However, these hypotheses have not been put to a quantitative test. In this paper, we report first principle calculations of the EPC and also estimate coupling with SF, including full momentum dependence. We find that: (1) EPC is strongly anisotropic, largely coming from the$$K-{K}^{{\prime} }$$ scattering, and therefore excludes triplet symmetry even as an excited state; (2) superconductivity is substantially weakened by SF, but anisotropy remains as above; and, (3) we do find the possibility of a Leggett mode, not in a singlet–triplet but in ans++–s±channel.more » « less
-
EPW is an open-source software for ab initio calculations of electron–phonon interactions and related materials properties. The code combines density functional perturbation theory and maximally localized Wannier functions to efficiently compute electron–phonon coupling matrix elements, and to perform predictive calculations of temperature-dependent properties and phonon-assisted quantum processes in bulk solids and low-dimensional materials. Here, we report on significant developments in the code since 2016, namely: a transport module for the calculation of charge carrier mobility under electric and magnetic fields using the Boltzmann transport equation; a superconductivity module for calculations of phonon-mediated superconductors using the anisotropic multi-band Eliashberg theory; an optics module for calculations of phonon-assisted indirect transitions; a module for the calculation of small and large polarons without supercells; and a module for calculating band structure renormalization and temperature-dependent optical spectra using the special displacement method. For each capability, we outline the methodology and implementation and provide example calculations.more » « less
-
A new member of the transition metal dichalcogenide (TMD) family, 2M-WS 2, has been recently discovered and shown to display superconductivity with a critical temperature (Tc) of 8.8 K, the highest Tc among superconducting TMDs at ambient pressure. Using first-principles calculations combined with the Migdal-Eliashberg formalism, we explore how the superconducting properties of 2M-WS 2 can be enhanced through doping. Mo, Nb, and Ta are used as dopants at the W sites, while Se is used at the S sites. We demonstrate that the monotonous decrease in the Tc observed experimentally for Mo and Se doping is due to the decrease in density of states at the Fermi level and the electron–phonon coupling of the low-energy phonons. In addition, we find that a noticeable increase in the electron–phonon coupling could be achieved when doping with Nb and Ta, leading to an enhancement of the Tc of up to 50% compared to the undoped compound.more » « less
An official website of the United States government
