skip to main content


Title: Scaling laws to predict humidity-induced swelling and stiffness in hydrogels
From pasta to biological tissues to contact lenses, gel and gel-like materials inherently soften as they swell with water. In dry, low-relative-humidity environments, these materials stiffen as they de-swell with water. Here, we use semi-dilute polymer theory to develop a simple power-law relationship between hydrogel elastic modulus and swelling. From this relationship, we predict hydrogel stiffness or swelling at arbitrary relative humidities. Our close predictions of properties of hydrogels across three different polymer mesh families at varying crosslinking densities and relative humidities demonstrate the validity and generality of our understanding. This predictive capability enables more rapid material discovery and selection for hydrogel applications in varying humidity environments.  more » « less
Award ID(s):
2011750
NSF-PAR ID:
10324974
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
43
ISSN:
1744-683X
Page Range / eLocation ID:
9893 to 9900
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrogels are soft water-rich materials with physical properties that can be easily tuned by modifying their network structure. For instance, increasing or decreasing the cross-linking density has a profound effect on their water absorption capabilities and mechanical strength. These physical changes are showcased in a new experiment for organic chemistry and polymer science teaching laboratories based on the practical green synthesis and characterization of lactose methacrylate derived hydrogels. Lactose, a disaccharide derived from dairy waste byproducts, is functionalized with photoreactive methacrylate groups using methacrylic anhydride. The resulting mixture is subsequently photoirradiated to generate a cross-linked hydrogel. Structure–property relationships are assessed through comparative studies of three hydrogels of varying compositions. Compression tests and swelling studies in different aqueous environments offer a guided-inquiry experience. Students determine a relationship between cross-linking density and the physical properties of the hydrogels. This experiment highlights the valorization of biomass and multiple green chemistry principles including use of renewable feedstocks, atom economy, energy efficiency, waste prevention, and water as a benign solvent. Learning outcomes for an organic chemistry laboratory course include introduction to disaccharide and cross-linked polymer structures, observable physical change dependency with cross-linking density, and laboratory methods for evaluating water absorption capacities. Objectives aligned with a polymer course are incorporating mechanical compression instrumentation, mechanistic understanding of light-induced free radical polymerizations, and an appreciation for the application of hydrogels to commercial products. Overall, the translation of a current literature publication to an inexpensive and versatile experiment engages students in a modern example of sustainable polymer chemistry. 
    more » « less
  2. Poly(acrylamide- co -acrylic acid) (P(AAm- co -AA)) hydrogels are highly tunable and pH-responsive materials frequently used in biomedical applications. The swelling behavior and mechanical properties of these gels have been extensively characterized and are thought to be controlled by the protonation state of the acrylic acid (AA) through the regulation of solution pH. However, their tribological properties have been underexplored. Here, we hypothesized that electrostatics and the protonation state of AA would drive the tribological properties of these polyelectrolyte gels. P(AAm- co -AA) hydrogels were prepared with constant acrylamide (AAm) concentration (33 wt%) and varying AA concentration to control the amount of ionizable groups in the gel. The monomer:crosslinker molar ratio (200:1) was kept constant. Hydrogel swelling, stiffness, and friction behavior were studied by systematically varying the acrylic acid (AA) concentration from 0–12 wt% and controlling solution pH (0.35, 7, 13.8) and ionic strength ( I = 0 or 0.25 M). The stiffness and friction coefficient of bulk hydrogels were evaluated using a microtribometer and borosilicate glass probes as countersurfaces. The swelling behavior and elastic modulus of these polyelectrolyte hydrogels were highly sensitive to solution pH and poorly predicted the friction coefficient ( µ ), which decreased with increasing AA concentration. P(AAm- co -AA) hydrogels with the greatest AA concentrations (12 wt%) exhibited superlubricity ( µ = 0.005 ± 0.001) when swollen in unbuffered, deionized water (pH = 7, I = 0 M) and 0.5 M NaOH (pH = 13.8, I = 0.25 M) ( µ = 0.005 ± 0.002). Friction coefficients generally decreased with increasing AA and increasing solution pH. We postulate that tunable lubricity in P(AAm- co -AA) gels arises from changes in the protonation state of acrylic acid and electrostatic interactions between the probe and hydrogel surface. 
    more » « less
  3. Abstract

    Hydrogels with the ability to change shape in response to biochemical stimuli are important for biosensing, smart medicine, drug delivery, and soft robotics. Here, a family of multicomponent DNA polymerization motor gels with different polymer backbones is created, including acrylamide‐co‐bis‐acrylamide (Am‐BIS), poly(ethylene glycol) diacrylate (PEGDA), and gelatin‐methacryloyl (GelMA) that swell extensively in response to specific DNA sequences. A common mechanism, a polymerization motor that induces swelling is driven by a cascade of DNA hairpin insertions into hydrogel crosslinks. These multicomponent hydrogels can be photopatterned into distinct shapes, have a broad range of mechanical properties, including tunable shear moduli between 297 and 3888 Pa and enhanced biocompatibility. Human cells adhere to the GelMA‐DNA gels and remain viable during ≈70% volumetric swelling of the gel scaffold induced by DNA sequences. The results demonstrate the generality of sequential DNA hairpin insertion as a mechanism for inducing shape change in multicomponent hydrogels, suggesting widespread applicability of polymerization motor gels in biomaterials science and engineering.

     
    more » « less
  4. Abstract

    Endovascular embolization of cerebral aneurysms is a common approach for reducing the risk of often‐fatal hemorrhage. However, currently available materials used to occlude these aneurysms provide incomplete filling (coils) or require a complicated, time‐consuming delivery procedure (solvent‐exchange precipitating polymers). The objective of this work was to develop an easily deliverable in situ forming hydrogel that can occlude the entire volume of an aneurysm. The hydrogel is formed by mixing a solution of a temperature‐responsive polymer containing pendent thiol groups (poly(NIPAAm‐co‐cysteamine) or poly(NIPAAm‐co‐cysteamine‐co‐JAAm)) with a solution of poly(ethylene glycol) diacrylate (PEGDA). Incorporation of hydrophilic grafts of polyetheramine acrylamide (JAAm) in the temperature‐responsive polymer caused weaker physical crosslinking, facilitated faster and more complete chemical crosslinking, and increased gel swelling. One formulation (30 wt % PNCJ20 + PEGDA) could be delivered for over 220 s after mixing, formed a strong and elastic hydrogel (G' > 6000 Pa) within 30 min and once set, maintained its shape and volume in a model aneurysm under flow. This gel represents a promising candidate water‐based material utilizing both physical and chemical crosslinking that warrants further investigation as an embolic agent for saccular aneurysms.

     
    more » « less
  5. ynthesis-property relation is fundamental to materials science, but many aspects of the relation are not well understood for many materials. Impetus for this paper comes from our recent appreciation for the distinct roles of entanglements and crosslinks in a polymer network. Here we study the synthesis-property relation of polyacrylamide hydrogels prepared by free radical polymerization. Some of the as-prepared hydrogels are further submerged in water to swell either to equilibrium or to a certain polymer content. The synthesis parameters include the composition of a precursor, as well as the polymer content of a hydrogel. Series of hydrogels are prepared along several paths in the space of synthesis parameters. For each hydrogel, the stress-stretch curve is measured, giving four properties: modulus, strength, stretchability, and work of fracture. We interpret the experimentally measured synthesis-property relation in terms of entropic polymer networks of covalent bonds. When the precursor has a low crosslinker-to-monomer molar ratio, the resulting polymer network has on average long polymer segments. When the precursor has a low water-to-monomer molar ratio, the resulting polymer network has on average many entanglements per polymer segment. We show that crosslinks lower strength, but entanglements do not. By contrast, both crosslinks and entanglements increase modulus. A network of highly entangled long polymer segments exhibits high swell resistance, modulus, and strength. 
    more » « less