Additive engineering is a common strategy to improve the performance and stability of metal halide perovskite through the modulation of crystallization kinetics and passivation of surface defects. However, much of this work has lacked a systematic approach necessary to understand how the functionality and molecular structure of the additives influence perovskite performance and stability. This paper describes the inclusion of low concentrations of 5-aminovaleric acid (5-AVA) and its ammonium acid derivatives, 5-ammoniumvaleric acid iodide (5-AVAI) and 5-ammoniumvaleric acid chloride (5-AVACl), into the precursor inks for methylammonium lead triiodide (MAPbI3) perovskite and highlights the important role of halides in affecting the interactions of additives with perovskite and film properties. The film quality, as determined by X-ray diffraction (XRD) and photoluminescence (PL) spectrophotometry, is shown to improve with the inclusion of all additives, but an increase in annealing time from 5 to 30 min is necessary. We observe an increase in grain size and a decrease in film roughness with the incorporation of 5-AVAI and 5-AVACl with scanning electron microscopy (SEM) and atomic force microscopy (AFM). Critically, X-ray photoelectron spectroscopy (XPS) measurements and density functional theory (DFT) calculations show that 5-AVAI and 5-AVACl preferentially interact with MAPbI3 surfaces via the ammonium functional group, while 5-AVA will interact with either amino or carboxylic acid functional groups. Charge localization analysis shows the surprising result that HCl dissociates from 5-AVACl in vacuum, resulting in the decomposition of the ammonium acid to 5-AVA. We show that device repeatability is improved with the inclusion of all additives and that 5-AVACl increases the power conversion efficiency of devices from 17.61 ± 1.07 to 18.07 ± 0.42%. Finally, we show stability improvements for unencapsulated devices exposed to 50% relative humidity, with devices incorporating 5-AVAI and 5-AVACl exhibiting the greatest improvements.
more »
« less
Evaporation of Methylammonium Iodide in Thermal Deposition of MAPbI3
Thermal evaporation is an important technique for fabricating methylammonium lead iodide (MAPbI3), but the process is complicated by the need to co-evaporate methylammonium iodide (MAI) and PbI2. In this work, the effect of water vapor during the thermal deposition of MAPbI3 was investigated under high vacuum. The evaporation process was monitored with a residual gas analyzer (RGA), and the film quality was examined with X-ray photoelectron spectroscopy (XPS). The investigations showed that during evaporation, MAI decomposed while PbI2 evaporated as a whole compound. It was found that the residual water vapor reacted with one of the MAI-dissociated products. The higher iodine ratio suggests that the real MAI flux was higher than the reading from the QCM. The XPS analysis demonstrated that the residual water vapor may alter the elemental ratios of C, N, and I in thermally deposited MAPbI3. Morphologic properties were investigated with atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). It was observed that a sample grown with high water vapor pressure had a roughened surface and poor film quality. Therefore, an evaporation environment with water vapor pressure below 10−8 Torr is needed to fabricate high quality perovskite films.
more »
« less
- Award ID(s):
- 1903962
- PAR ID:
- 10325075
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 11
- Issue:
- 10
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 2532
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Photonic curing (PC) can facilitate high-speed perovskite solar cell (PSC) manufacturing because it uses high-intensity light pulses to crystallize perovskite films in milliseconds. However, optimizing PC conditions is challenging due to its many variables, and using power conversion efficiency (PCE) as the optimization metric is both time-consuming and labor-intensive. This work presents a machine learning (ML) approach to optimize PC conditions for fabricating methylammonium lead iodide (MAPbI3) films by quantitatively comparing their ultraviolet-visible (UV-vis) absorbance spectra to thermal annealed (TA) films using four similarity metrics. We perform Bayesian optimization coupled with Gaussian process regression (BO-GP) to minimize the similarity metrics. Refining PC conditions using active learning based on BO-GP models, we achieve a PC MAPbI3 film with an absorbance spectrum closely matching a TA reference film, which is further verified by its crystalline and morphological properties. Thus, we demonstrate that the UV-vis absorption spectrum can accurately proxy film quality. Additionally, we use an AI-based segmentation model for a more efficient grain size analysis. However, when we use the optimized PC condition to fabricate PSCs, we find that interaction between MAPbI3 and the hole transport layer (HTL) during PC critically degrades the PSC performance. By adding a buffer layer between the HTL and MAPbI3, the optimized PC PSCs produce a champion PCE of 11.8%, comparable to the TA reference of 11.7%. Using UV-vis similarity metrics instead of device PCE as the objective in our BO-GP method accelerates the optimization of PC processing conditions for MAPbI3 films.more » « less
-
By means of density functional theory computations, we comprehensively investigated the stability and electronic properties of the hybrid CH3NH3PbI3 (methylammonium lead iodide, MAPI)/graphene heterojunctions, where the MAPI layer was adopted with MAI (methylammonium iodide)-terminations. Our computations demonstrated that the σ–π interfacial interactions make the contact very stable, and such interactions lead to charge redistribution and concomitant internal electric field in the interface, which is beneficial for the electron-hole separation.more » « less
-
Perovskite solar cells (PSCs) have attracted significant research efforts due to their remarkable performance. However, most perovskite films are prepared by the antisolvent method which is not suitable for practical applications. Herein, a (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3(CsFAMA) perovskite film fabrication technique is developed using solvent volatilization without any antisolvents. The films are formed through recrystallization via the intermediate phase CsMAFAPbIxClyBrzduring annealing, leading to high‐quality perovskite films. The perovskite growth mechanism is investigated in terms of controlling the amount of formamidinium iodide and methylammonium chloride in the precursor solutions. The oriental growth of the films via the intermediate phase is confirmed by the grazing‐incidence wide‐angle X‐ray scattering measurements. The photovoltaic properties of the perovskite films are investigated. The PSCs based on the films fabricated using the method exhibit a high efficiency of 20.6%. The method developed in this work is based on solvent volatilization, which exhibits significant potential in high reproducibility, facile operation, and large‐scale production.more » « less
-
Powders and films composed of tin dioxide (SnO2) are promising candidates for a variety of high-impact applications, and despite the material’s prevalence in such studies, it remains of high importance that commercially available materials meet the quality demands of the industries that these materials would most benefit. Imaging techniques, such as scanning electron microscopy (SEM), atomic force microscopy (AFM), were used in conjunction with Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) to assess the quality of a variety of samples, such as powder and thin film on quartz with thicknesses of 41 nm, 78 nm, 97 nm, 373 nm, and 908 nm. In this study, the dependencies of the corresponding Raman, XPS, and SEM analysis results on properties of the samples, like the thickness and form (powder versus film) are determined. The outcomes achieved can be regarded as a guide for performing quality checks of such products, and as reference to evaluate commercially available samples.more » « less
An official website of the United States government

