Abstract Fast reaction between organic salt and lead iodide always leads to small perovskite crystallites and concentrated defects. Here, polyacrylic acid is blended with organic salt, so as to regulate the crystallization in a two‐step growth method. It is observed that addition of polyacrylic acid retards aggregation and crystallization behavior of the organic salt, and slows down the reaction rate between organic salt and PbI 2 , by which “slow‐release effect” is defined. Such effect improves crystallization of perovskite. X‐ray diffraction study shows that, after addition of 2 m m polyacrylic acid, average crystallite size of perovskite increases from ≈40 to ≈90 nm, meanwhile, grain size increases. Thermal admittance spectroscopy study shows that trap density is reduced by nearly one order (especially for deep energy levels). Due to the improved crystallization and reduced trap density, charge recombination is obviously reduced, while lifetime of charge carriers in perovskite film and devices are prolonged, according to time‐resolved photoluminescence and transient photo‐voltage decay curve tests, respectively. Accordingly, power conversion efficiency of the device is promoted from 19.96 (±0.41)% to 21.84 (±0.25)% (with a champion efficiency of 22.31%), and further elevated to 24.19% after surface modification by octylammonium iodide.
more »
« less
Passivating the interface between halide perovskite and SnO 2 by capsaicin to accelerate charge transfer and retard recombination
Capsaicin is used to modify SnO 2 quantum dots and then used as an electron-transfer material for perovskite solar cells. After capsaicin modification, the power conversion efficiency of the devices increases from 19.90 (± 0.47)% to 21.87 (± 0.28)% with a champion device of 22.24% (AM 1.5G, 100 mW/cm 2 ). Transient photovoltage and photocurrent decay show that, after the capsaicin doping, the lifetime increases from 21.55 (± 1.54) to 27.63 (± 1.45) μs, while the charge extraction time reduces from 1.90 (± 0.09) to 1.67 (± 0.06) μs. Time-resolved photoluminescence and impedance spectrum studies show similar results. The accelerated charge transfer and retarded recombination are due to defect passivation. Space charge limited current study shows that, after modification, the trap density of devices is reduced from 2.24 × 10 15 to 1.28 × 10 15 cm −3 . X-ray photoelectron spectroscopy and theoretical calculation indicate that the reduced trap density is due to the chemical interaction between carbonyl group (from capsaicin) and Sn atom, and that between carbonyl group and Pb atom.
more »
« less
- Award ID(s):
- 1903962
- PAR ID:
- 10325078
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 120
- Issue:
- 10
- ISSN:
- 0003-6951
- Page Range / eLocation ID:
- 103503
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Substitutionally doped transition metal dichalcogenides (TMDs) are essential for advancing TMD‐based field effect transistors, sensors, and quantum photonic devices. However, the impact of local dopant concentrations and dopant–dopant interactions on charge doping and defect formation within TMDs remains underexplored. Here, a breakthrough understanding of the influence of rhenium (Re) concentration is presented on charge doping and defect formation in MoS2monolayers grown by metal–organic chemical vapor deposition (MOCVD). It is shown that Re‐MoS2films exhibit reduced sulfur‐site defects, consistent with prior reports. However, as the Re concentration approaches ⪆2 atom%, significant clustering of Re in the MoS2is observed. Ab Initio calculations indicate that the transition from isolated Re atoms to Re clusters increases the ionization energy of Re dopants, thereby reducing Re‐doping efficacy. Using photoluminescence (PL) spectroscopy, it is shown that Re dopant clustering creates defect states that trap photogenerated excitons within the MoS2lattice, resulting in broad sub‐gap emission. These results provide critical insights into how the local concentration of metal dopants influences carrier density, defect formation, and exciton recombination in TMDs, offering a novel framework for designing future TMD‐based devices with improved electronic and photonic properties.more » « less
-
null (Ed.)Group IVB transition metal dichalcogenides (TMDCs) have attracted significant attention due to their predicted high charge carrier mobility, large sheet current density, and enhanced thermoelectric power. Here, we investigate the electrical and optoelectronic properties of few-layer titanium diselenide (TiSe 2 )-metal junctions through spatial-, wavelength-, temperature-, power- and temporal-dependent scanning photocurrent measurements. Strong photocurrent responses have been detected at TiSe 2 -metal junctions, which is likely attributed to both photovoltaic and photothermoelectric effects. A fast response time of 31 μs has been achieved, which is two orders of magnitude better than HfSe 2 based devices. More importantly, our experimental results reveal a significant enhancement in the response speed upon cooling to the charge-density-wave (CDW) phase transition temperature ( T CDW = 206 K), which may result from dramatic reduction in carrier scattering that occurs as a result of the switching between the normal and CDW phases of TiSe 2 . Additionally, the photoresponsivity at 145 K is up to an order of magnitude higher than that obtained at room temperature. These fundamental studies not only offer insight for the photocurrent generation mechanisms of group IVB TMDC materials, but also provide a route to engineering future temperature-dependent, two-dimensional, fast electronic and optoelectronic devices.more » « less
-
Improving efficiency and stability has become an urgent issue in the application of perovskite solar cells (PSCs). Herein, a kind of long‐chain polymer or polymethylmethacrylate (PMMA) is added into the spiro‐OMeTAD matrix to improve the film formation process and hence the device performance. It is observed that, after modification, the spiro‐OMeTAD‐based hole‐transporting layer becomes uniform, continuous, and condensed. Meanwhile, the power conversion efficiency of the devices is upgraded. Compared with the control device, open‐circuit voltage of the modified one (with moderate doping) increases from 1.06 (±0.03) to 1.10 (±0.02) V, fill factor increases from 72.20 (±3.44)% to 75.59 (±3.35)%, and the power conversion efficiency increases from 18.82 (±1.06)% to 20.51 (±0.82)% (highest at 21.78%) under standard test condition (AM 1.5G, 100 mW cm−2). Transient photocurrent/photovoltage decay curves, time‐resolved photoluminance, and impedance spectroscopy studies show that the modification could accelerate charge transfer and retard interfacial recombination. In addition, the modification improves device stability. Due to the strengthened barrier against penetration of “H2O/O2/Ag,” the efficiency of the unsealed device could retain 91.49% (by average) of the initial one after 100 days storage in the dark [relative humidity = 30(±5)%]. This work shows that long‐chain polymer doping could simultaneously improve efficiency and stability of spiro‐OMeTAD‐based PSCs.more » « less
-
A new record‐high room‐temperature electron Hall mobility (μRT = 194 cm2 V−1 s−1atn ≈ 8 × 1015 cm−3) for β‐Ga2O3is demonstrated in the unintentionally doped thin film grown on (010) semi‐insulating substrate via metal‐organic chemical vapor deposition (MOCVD). A peak electron mobility of ≈9500 cm2 V−1 s−1is achieved at 45 K. Further investigation on the transport properties indicates the existence of sheet charges near the epilayer/substrate interface. Si is identified as the primary contributor to the background carrier in both the epilayer and the interface, originating from both surface contamination and growth environment. The pregrowth hydrofluoric acid cleaning of the substrate leads to an obvious decrease in Si impurity both at the interface and in the epilayer. In addition, the effect of the MOCVD growth condition, particularly the chamber pressure, on the Si impurity incorporation is studied. A positive correlation between the background charge concentration and the MOCVD growth pressure is confirmed. It is noteworthy that in a β‐Ga2O3film with very low bulk charge concentration, even a reduced sheet charge density plays an important role in the charge transport properties.more » « less
An official website of the United States government

