Ribosomes are essential for protein synthesis in all organisms and their biogenesis and number are tightly controlled to maintain homeostasis in changing environmental conditions. While ribosome assembly and quality control mechanisms have been extensively studied, our understanding of ribosome degradation is limited. In yeast or animal cells, ribosomes are degraded after transfer into the vacuole or lysosome by ribophagy or nonselective autophagy, and ribosomal RNA can also be transferred directly across the lysosomal membrane by RNautophagy. In plants, ribosomal RNA is degraded by the vacuolar T2 ribonuclease RNS2 after transport by autophagy-related mechanisms, although it is unknown if a selective ribophagy pathway exists in plants. In this review, we describe mechanisms of turnover of ribosomal components in animals and yeast, and, then, discuss potential pathways for degradation of ribosomal RNA and protein within the vacuole in plants.
more »
« less
Mapping Critical Residues in ATG11’s Coiled-Coil 2 Domain that Block Multiple Interactions and Disrupt Selective Autophagy
Selective autophagy is a conserved subcellular process that maintains the health of eukaryotic cells by targeting damaged or toxic cytoplasmic components to the vacuole/lysosome for degradation. A key player in the initiation of selective autophagy in S. Cerevisiae (baker’s yeast) is a large adapter protein called Atg11. Atg11 has multiple predicted coiled-coil domains and intrinsically disordered regions, is known to dimerize, and binds and organizes other essential components of the autophagosome formation machinery, including Atg1 and Atg9. We performed systematic directed mutagenesis on the coiled-coil 2 domain of Atg11 in order to map which residues were required for its structure and function. Using yeast-2-hybrid and coimmunoprecipitation, we found only three residues to be critical: I562, Y565, and I569. Mutation of any of these, but especially Y565, could interfere with Atg11 dimerization and block its interaction with Atg1 and Atg9, thereby inactivating selective autophagy.
more »
« less
- Award ID(s):
- 1613653
- PAR ID:
- 10325082
- Date Published:
- Journal Name:
- Frontiers in Cell and Developmental Biology
- Volume:
- 9
- ISSN:
- 2296-634X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The previously reported Q is a thermoresponsive coiled-coil protein capable of higher-order supramolecular assembly into fibers and hydrogels with upper critical solution temperature (UCST) behavior. Here, we introduce a new coiled-coil protein that is redesigned to disfavor lateral growth of its fibers and thus achieve a higher crosslinking density within the formed hydrogel. We also introduce a favorable hydrophobic mutation to the pore of the coiled-coil domain for increased thermostability of the protein. We note that an increase in storage modulus of the hydrogel and crosslinking density is coupled with a decrease in fiber diameter. We further fully characterize our α-helical coiled-coil (Q2) hydrogel for its structure, nano-assembly, and rheology relative to our previous single domain protein, Q, over the time of its gelation demonstrating the nature of our hydrogel self-assembly system. In this vein, we also characterize the ability of Q2 to encapsulate the small hydrophobic small molecule, curcumin, and its impact on the mechanical properties of Q2. The design parameters here not only show the importance of electrostatic potential in self-assembly but also provide a step towards predictable design of electrostatic protein interactions.more » « less
-
Herein we describe the use of dynamic combinatorial chemistry to self-assemble complex coiled coil motifs. We amide-coupled a series of peptides designed to form homodimeric coiled coils with 3,5-dithiobenzoic acid (B) at the N-terminus and then allowed each B-peptide to undergo disulfide exchange. In the absence of peptide, monomer B forms cyclic trimers and tetramers, and thus we expected that addition of the peptide to monomer B would shift the equilibrium towards the tetramer to maximize coiled coil formation. Unexpectedly, we found that internal templation of the B-peptide through coiled coil formation shifts the equilibrium towards larger macrocycles up to 13 B-peptide subunits, with a preference for 4, 7, and 10-membered macrocycles. These macrocyclic assemblies display greater helicity and thermal stability relative to intermolecular coiled coil homodimer controls. The preference for large macrocycles is driven by the strength of the coiled coil, as increasing the coiled coil affinity increases the fraction of larger macrocycles. This system represents a new approach towards the development of complex peptide and protein assemblies.more » « less
-
The ability to engineer a solvent-exposed surface of self-assembling coiled coils allows one to achieve a higher-order hierarchical assembly such as nano- or microfibers. Currently, these materials are being developed for a range of biomedical applications, including drug delivery systems; however, ways to mechanistically optimize the coiled-coil structure for drug binding are yet to be explored. Our laboratory has previously leveraged the functional properties of the naturally occurring cartilage oligomeric matrix protein coiled coil (C), not only for its favorable motif but also for the presence of a hydrophobic pore to allow for small molecule binding. This includes the development of Q, a rationally designed pentameric coiled coil derived from C. Here, we present a small library of protein microfibers derived from the parent sequences of C and Q bearing various electrostatic potentials with the aim to investigate the influence of higher-order assembly and encapsulation of candidate small molecule, curcumin. The supramolecular fiber size appears to be well-controlled by sequence-imbued electrostatic surface potential, and protein stability upon curcumin binding is well correlated to relative structure loss, which can be predicted by in silico docking.more » « less
-
Parkinson’s disease is the second most common neurodegenerative disease which is caused by a lack of dopamine in the brain. Parkinson 22 is a form of Parkinson’s disease caused by variations in the coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) protein. This study investigates an aspartic acid-to-alanine swap on amino acid position 130 (D130A) of the CHCHD2 protein. We have employed protein modeling, conservation analysis, and molecular dynamics simulations to gain an understanding of the effects of the D130A variant on CHCHD2 protein structure and movement.more » « less
An official website of the United States government

