skip to main content


Title: Alkylation of poly-substituted aromatics to probe effects of mesopores in hierarchical zeolites with differing frameworks and crystal sizes
This study examines how the inherent diffusion constraints of MFI (3D, pore-limiting diameter (PLD) = 0.45 nm), BEA (3D, PLD = 0.60 nm), and MOR (1D, PLD = 0.65 nm) zeolite architectures, at both nanocrystal (nMFI, nBEA, nMOR; d crystal < 0.5 μm) and microcrystal (μBEA, μMOR; d crystal > 0.5 μm) scales, impact functions of mesopores in their hierarchical analogs. Reactivities, deactivation rates, and product selectivities were compared among zeolites, as well as to a mesoporous aluminosilicate control (Al-MCM-41; PLD = 6.2 nm), during Friedel–Crafts alkylation of 1,3,5-trimethylbenzene (TMB; d vdW = 0.72 nm) with benzyl alcohol (BA; d vdW = 0.58 nm) to form 1,3,5-trimethyl-2-benzylbenzene (TM2B; d vdW = 0.75 nm). Operation in the neat liquid phase ([TMB] 0  : [BA] 0 = 35 : 1, 393 K) ensured that the parallel BA self-etherification to yield dibenzyl ether (DBE; d vdW = 0.58 nm) occurred only at the expense of TM2B production when the alkylation reaction was impeded due to hindered access of TMB to confined protons. Investigation of secondary TM2B formation from reaction of DBE with TMB at low [BA]/[DBE] indicates an additional route of selectivity control for hierarchical zeolites that can achieve high BA conversion ( X BA > 0.9) with no DBE cofeed. These findings highlight a compounding advantage of increased diffusivity in mesopores that alter rates, extend lifetimes, and subsequently permit secondary reactions that enable significant shifts in product distribution. Fundamental insights into hierarchical zeolite reaction–diffusion–deactivation for alkylation of poly-substituted aromatics, as detailed here, can be applied broadly to reactions of other bulky species, including biomass-derived oxygenates, for more atom-efficient chemical and fuel production.  more » « less
Award ID(s):
2011750
NSF-PAR ID:
10325136
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
6
Issue:
11
ISSN:
2058-9689
Page Range / eLocation ID:
903 to 917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Micro/meso/macroporous (hierarchical) zeolites show remarkable catalytic performance for reactions involving bulky reactants. However, quantitative assessment of the microstructural characteristics contributing to the observed performance remains elusive. Here, structure–activity relationships are established for a set of micro/mesoporous self‐pillared pentasil (SPP) zeolites using two parallel liquid‐phase reactions (benzyl alcohol alkylation and self‐etherification) based on analysis of mass transport and reaction kinetics. A reaction–diffusion mathematical model is developed that quantitatively assigns the catalytic contributions of the external surface and micropores of SPP zeolites for these reactions. In addition, the effect of the zeolite external surface structure on the corresponding catalytic activity is quantitatively assessed by comparing SPP zeolites (with MFI structure) with MCM‐22 (with MWW structure). This work demonstrates that reaction–diffusion modeling allows quantitative description of the catalytic performance of hierarchical zeolites and provides a model reaction to assess nm‐sized characteristic diffusion lengths in MFI. © 2018 American Institute of Chemical EngineersAIChE J, 65: 1067–1075, 2019

     
    more » « less
  2. Abstract

    Commonly used methods to assess crystallinity, micro‐/mesoporosity, Brønsted acid site density and distribution (in micro‐ vs. mesopores), and catalytic activity suggest nearly invariant structure and function for aluminosilicate zeolite MFI two‐dimensional nanosheets before and after superheated steam treatment. Yet, pronounced reaction rate decrease for benzyl alcohol alkylation with mesitylene, a reaction that cannot take place in the zeolite micropores, is observed. Transmission electron microscopy images reveal pronounced changes in nanosheet thickness, aspect ratio and roughness indicating that nanosheet coarsening and the associated changes in the external (mesoporous) surface structure are responsible for the changes in the external surface catalytic activity. Superheated steam treatment of hierarchical zeolites can be used to alter nanosheet morphology and regulate external surface catalytic activity while preserving micro‐ and mesoporosity, and micropore reaction rates.

     
    more » « less
  3. Abstract

    Commonly used methods to assess crystallinity, micro‐/mesoporosity, Brønsted acid site density and distribution (in micro‐ vs. mesopores), and catalytic activity suggest nearly invariant structure and function for aluminosilicate zeolite MFI two‐dimensional nanosheets before and after superheated steam treatment. Yet, pronounced reaction rate decrease for benzyl alcohol alkylation with mesitylene, a reaction that cannot take place in the zeolite micropores, is observed. Transmission electron microscopy images reveal pronounced changes in nanosheet thickness, aspect ratio and roughness indicating that nanosheet coarsening and the associated changes in the external (mesoporous) surface structure are responsible for the changes in the external surface catalytic activity. Superheated steam treatment of hierarchical zeolites can be used to alter nanosheet morphology and regulate external surface catalytic activity while preserving micro‐ and mesoporosity, and micropore reaction rates.

     
    more » « less
  4. The synthesis of hierarchical lamellar zeolites with a controlled meso-/microporous morphology and acidity is an expanding area of research interest for a wide range of applications. Here, we report a one-step synthesis of a hierarchical meso-/microporous lamellar MFI–Sn/Al zeolite ( i.e. , containing both Lewis acidic Sn- and Al-sites and a Brønsted acidic Al–O(H)–Si site) and its catalytic application for the conversion of glucose into 5-(ethoxymethyl)furfural (EMF). The MFI–Sn/Al zeolite was prepared with the assistance of a diquaternary ammonium ([C 22 H 45 –N + (CH 3 ) 2 –C 6 H 12 –N + (CH 3 ) 2 –C 6 H 13 ]Br 2− , C 22-6-6 ) template in a composition of 100SiO 2 /5C 22-6-6 /18.5Na 2 O/ x Al 2 O 3 / y SnO 2 /2957H 2 O ( x = 0.5, 1, and 2; y = 1 and 2, respectively). The MFI–Sn/Al zeolites innovatively feature dual meso-/microporosity and dual Lewis and Brønsted acidity, which enabled a three-step reaction cascade for EMF synthesis from glucose in ethanol solvent. The reaction proceeded via the isomerization of glucose to fructose over Lewis acidic Sn sites and the dehydration of fructose to 5-hydroxymethylfurfural (HMF) and then the etherification of HMF and ethanol to EMF over the Brønsted acidic Al–O(H)–Si sites. The co-existence of multiple acidities in a single zeolite catalyst enabled one-pot cascade reactions for carbohydrate upgrading. The dual meso-/microporosity in the MFI–Sn/Al zeolites facilitated mass transport in processing of bulky biomass molecules. The balance of both types of acidity and meso-/microporosity realized an EMF yield as high as 44% from the glucose reactant. 
    more » « less
  5. Abstract High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co 0.2 Ni 0.2 Cu 0.2 Mg 0.2 Zn 0.2 )O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm 2 ), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability. Graphical abstract 
    more » « less