skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intercomparison of Burned Area Products and Its Implication for Carbon Emission Estimations in the Amazon
Carbon (C) emissions from forest fires in the Amazon during extreme droughts may correspond to more than half of the global emissions resulting from land cover changes. Despite their relevant contribution, forest fire-related C emissions are not directly accounted for within national-level inventories or carbon budgets. A fundamental condition for quantifying these emissions is to have a reliable estimation of the extent and location of land cover types affected by fires. Here, we evaluated the relative performance of four burned area products (TREES, MCD64A1 c6, GABAM, and Fire_cci v5.0), contrasting their estimates of total burned area, and their influence on the fire-related C emissions in the Amazon biome for the year 2015. In addition, we distinguished the burned areas occurring in forests from non-forest areas. The four products presented great divergence in the total burned area and, consequently, total related C emissions. Globally, the TREES product detected the largest amount of burned area (35,559 km2), and consequently it presented the largest estimate of committed carbon emission (45 Tg), followed by MCD64A1, with only 3% less burned area detected, GABAM (28,193 km2) and Fire_cci (14,924 km2). The use of Fire_cci may result in an underestimation of 29.54 ± 3.36 Tg of C emissions in relation to the TREES product. The same pattern was found for non-forest areas. Considering only forest burned areas, GABAM was the product that detected the largest area (8994 km2), followed by TREES (7985 km2), MCD64A1 (7181 km2) and Fire_cci (1745 km2). Regionally, Fire_cci detected 98% less burned area in Acre state in southwest Amazonia than TREES, and approximately 160 times less burned area in forests than GABAM. Thus, we show that global products used interchangeably on a regional scale could significantly underestimate the impacts caused by fire and, consequently, their related carbon emissions.  more » « less
Award ID(s):
1645887
PAR ID:
10325199
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
23
ISSN:
2072-4292
Page Range / eLocation ID:
3864
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wildfire is an essential earth‐system process, impacting ecosystem processes and the carbon cycle. Forest fires are becoming more frequent and severe, yet gaps exist in the modeling of fire on vegetation and carbon dynamics. Strategies for reducing carbon dioxide (CO2) emissions from wildfires include increasing tree harvest, largely based on the public assumption that fires burn live forests to the ground, despite observations indicating that less than 5% of mature tree biomass is actually consumed. This misconception is also reflected though excessive combustion of live trees in models. Here, we show that regional emissions estimates using widely implemented combustion coefficients are 59%–83% higher than emissions based on field observations. Using unique field datasets from before and after wildfires and an improved ecosystem model, we provide strong evidence that these large overestimates can be reduced by using realistic biomass combustion factors and by accurately quantifying biomass in standing dead trees that decompose over decades to centuries after fire (“snags”). Most model development focuses on area burned; our results reveal that accurately representing combustion is also essential for quantifying fire impacts on ecosystems. Using our improvements, we find that western US forest fires have emitted 851 ± 228 Tg CO2(~half of alternative estimates) over the last 17 years, which is minor compared to 16,200 Tg CO2from fossil fuels across the region. 
    more » « less
  2. Wildfires, exacerbated by extreme weather events and land use, threaten to change the Amazon from a net carbon sink to a net carbon source. Here, we develop and apply a coupled ecosystem-fire model to quantify how greenhouse gas–driven drying and warming would affect wildfires and associated CO 2 emissions in the southern Brazilian Amazon. Regional climate projections suggest that Amazon fire regimes will intensify under both low- and high-emission scenarios. Our results indicate that projected climatic changes will double the area burned by wildfires, affecting up to 16% of the region’s forests by 2050. Although these fires could emit as much as 17.0 Pg of CO 2 equivalent to the atmosphere, avoiding new deforestation could cut total net fire emissions in half and help prevent fires from escaping into protected areas and indigenous lands. Aggressive efforts to eliminate ignition sources and suppress wildfires will be critical to conserve southern Amazon forests. 
    more » « less
  3. Abstract Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire‐driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2lost in Amazon understory fires between 2001 and 2010. Trait‐enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests. 
    more » « less
  4. null (Ed.)
    Deforestation in the Brazilian Amazon is related to the use of fire to remove natural vegetation and install crop cultures or pastures. In this study, we evaluated the relation between deforestation, land-use and land-cover (LULC) drivers and fire emissions in the Apyterewa Indigenous Land, Eastern Brazilian Amazon. In addition to the official Brazilian deforestation data, we used a geographic object-based image analysis (GEOBIA) approach to perform the LULC mapping in the Apyterewa Indigenous Land, and the Brazilian biomass burning emission model with fire radiative power (3BEM_FRP) to estimate emitted particulate matter with a diameter less than 2.5 µm (PM2.5), a primary human health risk. The GEOBIA approach showed a remarkable advancement of deforestation, agreeing with the official deforestation data, and, consequently, the conversion of primary forests to agriculture within the Apyterewa Indigenous Land in the past three years (200 km2), which is clearly associated with an increase in the PM2.5 emissions from fire. Between 2004 and 2016 the annual average emission of PM2.5 was estimated to be 3594 ton year−1, while the most recent interval of 2017–2019 had an average of 6258 ton year−1. This represented an increase of 58% in the annual average of PM2.5 associated with fires for the study period, contributing to respiratory health risks and the air quality crisis in Brazil in late 2019. These results expose an ongoing critical situation of intensifying forest degradation and potential forest collapse, including those due to a savannization forest-climate feedback, within “protected areas” in the Brazilian Amazon. To reverse this scenario, the implementation of sustainable agricultural practices and development of conservation policies to promote forest regrowth in degraded preserves are essential. 
    more » « less
  5. The vast Angara region, with an area of 13.8 million ha, is located in the southern taiga of central Siberia, Russia. This is one of the most disturbed regions by both fire and logging in northern Asia. We have developed surface and ground fuel-load maps by integrating satellite and ground-based data with respect to the forest-growing conditions and the disturbance of the territory by anthropogenic and natural factors (fires and logging). We found that from 2001 to 2020, fuel loads increased by 8% in the study region, mainly due to a large amount of down woody debris at clearcuts and burned sites. The expansion of the disturbed areas in the Angara region resulted in an increase in natural fire hazards in spring and summer. Annual carbon emissions from fires varied from 0.06 to 6.18 Mt, with summer emissions accounting for more than 95% in extreme fire years and 31–68% in the years of low fire activity. While the trend in the increase in annual carbon emissions from fires is not statistically significant due to its high interannual variability and a large disturbance of the study area, there are significantly increasing trends in mean carbon emissions from fires per unit area (p < 0.005) and decadal means (p < 0.1). In addition, we found significant trends in the increase in emissions released by severe fires (p < 0.005) and by fires in wetter, dark, coniferous (spruce, p < 0.005 and Siberian pine, p < 0.025) forests. This indicates deeper burning and loss of legacy carbon that impacts on the carbon cycle resulting in climate feedback. 
    more » « less