skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Benchmark maps of 33 years of secondary forest age for Brazil
Abstract The restoration and reforestation of 12 million hectares of forests by 2030 are amongst the leading mitigation strategies for reducing carbon emissions within the Brazilian Nationally Determined Contribution targets assumed under the Paris Agreement. Understanding the dynamics of forest cover, which steeply decreased between 1985 and 2018 throughout Brazil, is essential for estimating the global carbon balance and quantifying the provision of ecosystem services. To know the long-term increment, extent, and age of secondary forests is crucial; however, these variables are yet poorly quantified. Here we developed a 30-m spatial resolution dataset of the annual increment, extent, and age of secondary forests for Brazil over the 1986–2018 period. Land-use and land-cover maps from MapBiomas Project (Collection 4.1) were used as input data for our algorithm, implemented in the Google Earth Engine platform. This dataset provides critical spatially explicit information for supporting carbon emissions reduction, biodiversity, and restoration policies, enabling environmental science applications, territorial planning, and subsidizing environmental law enforcement.  more » « less
Award ID(s):
1645887
PAR ID:
10325201
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Data
Volume:
7
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Carbon losses from forest degradation and disturbances are significant and growing sources of emissions in the Brazilian Amazon. Between 2003 and 2019, degradation and disturbance accounted for 44% of forest carbon losses in the region, compared with 56% from deforestation (forest clearing). We found that land tenure played a decisive role in explaining these carbon losses, with Undesignated Public Forests and Other Lands (e.g., private properties) accounting for the majority (82%) of losses during the study period. Illegal deforestation and land grabbing in Undesignated Public Forests widespread and increasingly are important drivers of forest carbon emissions from the region. In contrast, indigenous Territories and Protected Natural Areas had the lowest emissions, demonstrating their effectiveness in preventing deforestation and maintaining carbon stocks. These trends underscore the urgent need to develop reliable systems for monitoring and reporting on carbon losses from forest degradation and disturbance. Together with improved governance, such actions will be crucial for Brazil to reduce pressure on standing forests; strengthen Indigenous land rights; and design effective climate mitigation strategies needed to achieve its national and international climate commitments. 
    more » « less
  2. Carbon (C) emissions from forest fires in the Amazon during extreme droughts may correspond to more than half of the global emissions resulting from land cover changes. Despite their relevant contribution, forest fire-related C emissions are not directly accounted for within national-level inventories or carbon budgets. A fundamental condition for quantifying these emissions is to have a reliable estimation of the extent and location of land cover types affected by fires. Here, we evaluated the relative performance of four burned area products (TREES, MCD64A1 c6, GABAM, and Fire_cci v5.0), contrasting their estimates of total burned area, and their influence on the fire-related C emissions in the Amazon biome for the year 2015. In addition, we distinguished the burned areas occurring in forests from non-forest areas. The four products presented great divergence in the total burned area and, consequently, total related C emissions. Globally, the TREES product detected the largest amount of burned area (35,559 km2), and consequently it presented the largest estimate of committed carbon emission (45 Tg), followed by MCD64A1, with only 3% less burned area detected, GABAM (28,193 km2) and Fire_cci (14,924 km2). The use of Fire_cci may result in an underestimation of 29.54 ± 3.36 Tg of C emissions in relation to the TREES product. The same pattern was found for non-forest areas. Considering only forest burned areas, GABAM was the product that detected the largest area (8994 km2), followed by TREES (7985 km2), MCD64A1 (7181 km2) and Fire_cci (1745 km2). Regionally, Fire_cci detected 98% less burned area in Acre state in southwest Amazonia than TREES, and approximately 160 times less burned area in forests than GABAM. Thus, we show that global products used interchangeably on a regional scale could significantly underestimate the impacts caused by fire and, consequently, their related carbon emissions. 
    more » « less
  3. Land-use land-cover (LULC) changes are occurring rapidly in Southeast Asia (SEA), generally associated with population growth, economic development and competing demands for land. Land cover change is one of the vital factors affecting carbon dynamics and emissions. SEA is an important region to study urban-caused LULC emissions and the potential for nature-based solutions (NBS) and nature climate solutions (NCS), as it is home to nearly 15% of the world’s tropical forests and has some of the world’s fastest rates of urban growth. We present a fine-scale urban cluster level assessment for SEA of current (2015) and future (2050) scenarios for carbon sequestration service and climate mitigation potential. We identified 956 urban clusters distributed across 11 countries of SEA. Considering the urban expansion projected and decline in forests, this region could see a carbon loss of up to 0.11 Gigatonnes (Scenario SSP4 RCP 3.4). Comparing carbon change values to urban emissions, we found that the average offset value ranging from −2% (Scenario SSP1 RCP 2.6) to −21%. We also found that a few medium and large urban clusters could add to more than double the existing carbon emissions in 2050 in the SSP3 and SSP4 RCP 3.4 scenarios, while a minority of clusters could offset their emissions under SSP1. Our study confirms that NCS, and particularly reforestation, are in many cases able to offset the direct emissions from land cover conversion from SEA urban clusters. Hence, documenting the plausible LULC transitions and the associated impacts gains significance in the SEA region as the results can be useful for informing policy and sustainable land management. 
    more » « less
  4. Abstract As we increasingly understand the impact that land management intensification has on local and global climate, the call for nature-based solutions (NbS) in agroecosystems has expanded. Moreover, the pressing need to determine when and where NbS should be used raises challenges to socioecological data integration as we overcome spatiotemporal resolutions. Natural and working lands is an effort promoting NbS, particularly emissions reduction and carbon stock maintenance in forests. To overcome the spatiotemporal limitation, we integrated life cycle assessments (LCA), an ecological carbon stock model, and a land cover land use change model to synthesize rates of global warming potential (GWP) within a fine-scale geographic area (30 m). We scaled National Agricultural Statistic Survey land management data to National Land Cover Data cropland extents to assess GWP of cropland management over time and among management units (i.e. counties and production systems). We found that cropland extent alone was not indicative of GWP emissions; rather, rates of management intensity, such as energy and fertilizer use, are greater indicators of anthropogenic GWP. We found production processes for fuel and fertilizers contributed 51.93% of GWP, where 33.58% GWP was estimated from N2O emissions after fertilization, and only 13.31% GWP was due to energy consumption by field equipment. This demonstrates that upstream processes in LCA should be considered in NbS with the relative contribution of fertilization to GWP. Additionally, while land cover change had minimal GWP effect, urbanization will replace croplands and forests where NbS are implemented. Fine-scale landscape variations are essential for NbS to identify, as they accumulate within regional and global estimates. As such, this study demonstrates the capability to harness both LCA and fine-resolution imagery for applications in spatiotemporal and socioecological research towards identifying and monitoring NbS. 
    more » « less
  5. Forests are integral to the global land carbon sink, which has sequestered ~30% of anthropogenic carbon emissions over recent decades. The persistence of this sink depends on the balance of positive drivers that increase ecosystem carbon storage—e.g., CO2fertilization—and negative drivers that decrease it—e.g., intensifying disturbances. The net response of forest productivity to these drivers is uncertain due to the challenge of separating their effects from background disturbance–regrowth dynamics. We fit non-linear models to US forest inventory data (113,806 plot remeasurements in non-plantation forests from ~1999 to 2020) to quantify productivity trends while accounting for stand age, tree mortality, and harvest. Productivity trends were generally positive in the eastern United States, where climate change has been mild, and negative in the western United States, where climate change has been more severe. Productivity declines in the western United States cannot be explained by increased mortality or harvest; these declines likely reflect adverse climate-change impacts on tree growth. In the eastern United States, where data were available to partition biomass change into age-dependent and age-independent components, forest maturation and increasing productivity (likely due, at least in part, to CO2fertilization) contributed roughly equally to biomass carbon sinks. Thus, adverse effects of climate change appear to overwhelm any positive drivers in the water-limited forests of the western United States, whereas forest maturation and positive responses to age-independent drivers contribute to eastern US carbon sinks. The future land carbon balance of forests will likely depend on the geographic extent of drought and heat stress. 
    more » « less