skip to main content


Title: Metabolomic Response of Early-Stage Wheat (Triticum aestivum) to Surfactant-Aided Foliar Application of Copper Hydroxide and Molybdenum Trioxide Nanoparticles
Surfactants are commonly used in foliar applications to enhance interactions of active ingredients with plant leaves. We employed metabolomics to understand the effects of TritonTM X-100 surfactant (SA) and nanomaterials (NMs) on wheat (Triticum aestivum) at the molecular level. Leaves of three-week-old wheat seedlings were exposed to deionized water (DI), surfactant solution (SA), NMs-surfactant suspensions (Cu(OH)2 NMs and MoO3 NMs), and ionic-surfactant solutions (Cu IONs and Mo IONs). Wheat leaves and roots were evaluated via physiological, nutrient distribution, and targeted metabolomics analyses. SA had no impact on plant physiological parameters, however, 30+ dysregulated metabolites and 15+ perturbed metabolomic pathways were identified in wheat leaves and roots. Cu(OH)2 NMs resulted in an accumulation of 649.8 μg/g Cu in leaves; even with minimal Cu translocation, levels of 27 metabolites were significantly changed in roots. Due to the low dissolution of Cu(OH)2 NMs in SA, the low concentration of Cu IONs induced minimal plant response. In contrast, given the substantial dissolution of MoO3 NMs (35.8%), the corresponding high levels of Mo IONs resulted in significant metabolite reprogramming (30+ metabolites dysregulated). Aspartic acid, proline, chlorogenic acid, adenosine, ascorbic acid, phenylalanine, and lysine were significantly upregulated for MoO3 NMs, yet downregulated under Mo IONs condition. Surprisingly, Cu(OH)2 NMs stimulated wheat plant tissues more than MoO3 NMs. The glyoxylate/dicarboxylate metabolism (in leaves) and valine/leucine/isoleucine biosynthesis (in roots) uniquely responded to Cu(OH)2 NMs. Findings from this study provide novel insights on the use of surfactants to enhance the foliar application of nanoagrochemicals.  more » « less
Award ID(s):
1901515
NSF-PAR ID:
10325239
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nanomaterials
Volume:
11
Issue:
11
ISSN:
2079-4991
Page Range / eLocation ID:
3073
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dissolution of CuO nanoparticles, releasing Cu ions, is a primary mechanism of Cu interaction in the rooting zone of plants. CuO dissolution is sometimes incorrectly considered negligible at high pH, since complexation of Cu with dissolved organic matter may enhance nanoparticle dissolution. Therefore data on the effects of plant-microbial-soil interactions on nanoparticle dissolution, particularly in alkaline soils, are needed. Dissolution of CuO nanoparticles (100 mg kg −1 Cu) was studied in sand supplemented with factorial combinations of wheat growth, a root-colonizing bacterium, and saturated paste extracts (SPEs) from three alkaline, calcareous soils. In control sand systems with 3.34 mM Ca(NO 3 ) 2 solution, dissolved Cu was low (266 μg L −1 Cu). Addition of dissolved organic matter via wheat root metabolites and/or soil SPEs increased dissolved Cu to 795–6250 μg L −1 Cu. Dissolution was correlated with dissolved organic carbon ( R = 0.916, p < 0.0001). Ligands >3 kDa, presumably fulvic acid from the SPEs, complexed Cu driving solubility; the addition of plant exudates further increased solubility 1.5–3.5×. The root-colonizing bacterium decreased dissolved Cu in sand pore waters from planted systems due to metabolism of root exudates. Batch solubility studies (10 mg L −1 Cu) with the soil SPEs and defined solutions containing bicarbonate or fulvic acid confirmed elevated CuO nanoparticle solubility at >7.5 pH. Nanoparticle dissolution was suppressed in batch experiments compared to sand, via nanoparticle organic matter coating or homoconjugation of dissolved organic matter. Alterations of CuO nanoparticles by soil organic matter, plant exudates, and bacteria will affect dissolution and bioavailability of the CuO nanoparticles in alkaline soils. 
    more » « less
  2. CuO nanoparticles (NPs) are explored as fungicides and fertilizers, and are increasingly likely to be applied to agricultural soils. Consequently, interactions of CuO NPs with soil pore water (SPW) components, plants, and microbes must be understood. These experiments examined whether dissolved natural organic matter (DNOM) from SPW, or root/bacterial exudates, changed wheat ( Triticum aestivum L. v. Deloris) responses to 100 mg kg −1 (Cu/sand) as CuO NPs. Seedlings were grown in sand with 3.34 mM Ca(NO 3 ) 2 or one of three SPWs, differing in DNOM concentration and composition. At 10 days post-germination, CuO NPs stunted roots by 59% in the 3.34 mM Ca(NO 3 ) 2 and 26–35% in the three SPWs compared to plants grown without NPs. Malate, citrate, gluconate, and 2′-deoxymugineic acid (DMA), were elevated 1.3 to 5-fold in the rhizosphere with CuO NPs present. Cu was bioavailable through metallo-organic complexes, including Cu–DMA and Cu–gluconate. Fulvic acid in SPWs mitigated CuO NP-induced wheat root shortening. Pseudomonas chlororaphis O6 eliminated malate and citrate in the rhizospheres, reduced rhizosphere dissolved Cu ∼18–66%, and reduced root Cu 39% across all SPWs while enhancing root stunting ∼17% more across all SPWs than non-inoculated wheat grown with CuO NPs. Thus, both SPW components and root microbial colonization influenced wheat responses to CuO NPs. These interactions are likely in agricultural soils with additional processes, such as ion sorption, to influence CuO NP phytotoxicity, highlighting the importance of considering not just the target plant, but soil properties and associated microbiomes when evaluating impacts of NPs in agricultural usage. 
    more » « less
  3. Customized Cu3(PO4)2 and CuO nanosheets and commercial CuO nanoparticles were investigated for micronutrient delivery and suppression of soybean sudden death syndrome. An ab initio thermodynamics approach modelled how material morphology and matrix effects control the nutrient release. Infection reduced the biomass and photosynthesis by 70.3 and 60%, respectively; the foliar application of nanoscale Cu reversed this damage. Disease-induced changes in the antioxidant enzyme activity and fatty acid profile were also alleviated by Cu amendment. The transcription of two dozen defence- and health-related genes correlates a nanoscale Cu-enhanced innate disease response to reduced pathogenicity and increased growth. Cu-based nanosheets exhibited a greater disease suppression than that of CuO nanoparticles due to a greater leaf surface affinity and Cu dissolution, as determined computationally and experimentally. The findings highlight the importance and tunability of nanomaterial properties, such as morphology, composition and dissolution. The early seedling foliar application of nanoscale Cu to modulate nutrition and enhance immunity offers a great potential for sustainable agriculture. 
    more » « less
  4. Introduction Products of plant secondary metabolism, such as phenolic compounds, flavonoids, alkaloids, and hormones, play an important role in plant growth, development, stress resistance. The plant family Rubiaceae is extremely diverse and abundant in Central America and contains several economically important genera, e.g. Coffea and other medicinal plants. These are known for the production of bioactive polyphenols (e.g. caffeine and quinine), which have had major impacts on human society. The overall goal of this study was to develop a high-throughput workflow to identify and quantify plant polyphenols. Methods First, a method was optimized to extract over 40 families of phytochemicals. Then, a high-throughput metabolomic platform has been developed to identify and quantify 184 polyphenols in 15 min. Results The current metabolomics study of secondary metabolites was conducted on leaves from one commercial coffee variety and two wild species that also belong to the Rubiaceae family. Global profiling was performed using liquid chromatography high-resolution time-of-flight mass spectrometry. Features whose abundance was significantly different between coffee species were discriminated using statistical analysis and annotated using spectral databases. The identified features were validated by commercially available standards using our newly developed liquid chromatography tandem mass spectrometry method. Discussion Caffeine, trigonelline and theobromine were highly abundant in coffee leaves, as expected. Interestingly, wild Rubiaceae leaves had a higher diversity of phytochemicals in comparison to commercial coffee: defense-related molecules, such as phenylpropanoids (e.g., cinnamic acid), the terpenoid gibberellic acid, and the monolignol sinapaldehyde were found more abundantly in wild Rubiaceae leaves. 
    more » « less
  5. Abstract Background: Smoking has not been an established risk factor for prostate cancer (PCa), and has not been emphasized in PCa prevention. However, recent studies have shown increasing evidence that there is a higher risk of biochemical recurrence, PCa mortality, and metastasis among current smokers, presenting an urgent need in re-evaluating the association between smoking and aggressive PCa. This study aimed to determine whether smoking increase the likelihood of developing a more aggressive prostate cancer. Methods: Equal numbers of African Americans (AAs) and European Americans (EAs) by smoking status (never/former/current) matched with PCa aggressiveness, BMI, 5-year age group, and year of baseline recruitment, totaling 480 participants, were included in the metabolomics study. For metabolomics analysis, fold change and BH-adjusted p-value from t-test adjusted for age for univariate analysis, and PCA adjusted for age and PLS-DA supervised statistical analysis for multivariate analysis were employed to decipher the underlying metabolomic patterns, and identify significantly dysregulated metabolites for the variables of interest. Results: AA participants were significantly younger (mean=61.4, SD=7.7) compared with EAs (mean=63.5, SD=7.5). Current smokers had a 2.4 times higher risk of high aggressive PCa. When stratified by race, the risk diminished for EAs but increased for AAs. Global metabolic profiles detected a total of 1,487 compounds of known identity. After excluding metabolites with missing values in more than 20% of the samples and with small standard variation, we observed a distinct cluster of participants from AA aggressive PCa patients and current smokers that were separated from EAs and never smokers. With BH-adjusted p-value < 0.05 and fold change > 2, we identified 10 significantly dysregulated metabolites between AA and EA among high aggressive PCa and current smokers. Further, 36 metabolites between current and never smokers among AA high aggressive PCa were significantly dysregulated, but none of them are annotated as tobacco metabolites. Conclusion: Our study presented distinctive metabolomics profiles specific to AA current smokers who had high aggressive PCa. Furthermore, the distinctive patterns were not driven by the tobacco metabolites, with the potential to identify metabolites that might help to understand the relationships between smoking and aggressive PCa in AA. Citation Format: Se-Ran Jun, L. Joseph Su, Eryn Matich, Ping-Ching Hsu. Distinctive metabolomics profiles associated with African American current smokers who have high aggressive prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3680. 
    more » « less