skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal Network Analysis
Fueled by recent advances in statistical modeling and the rapid growth of network data, social network analysis has become increasingly popular in sociology and related disciplines. However, a significant amount of work in the field has been descriptive and correlational, which prevents the findings from being more rigorously translated into practices and policies. This article provides a review of the popular models and methods for causal network analysis, with a focus on causal inference threats (such as measurement error, missing data, network endogeneity, contextual confounding, simultaneity, and collinearity) and potential solutions (such as instrumental variables, specialized experiments, and leveraging longitudinal data). It covers major models and methods for both network formation and network effects and for both sociocentric networks and egocentric networks. Lastly, this review also discusses future directions for causal network analysis. Expected final online publication date for the Annual Review of Sociology, Volume 48 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.  more » « less
Award ID(s):
2049207
PAR ID:
10325253
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Sociology
Volume:
48
Issue:
1
ISSN:
0360-0572
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fairness-aware machine learning has attracted a surge of attention in many domains, such as online advertising, personalized recommendation, and social media analysis in web applications. Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age. Among many existing fairness notions, counterfactual fairness is a popular notion defined from a causal perspective. It measures the fairness of a predictor by comparing the prediction of each individual in the original world and that in the counterfactual worlds in which the value of the sensitive attribute is modified. A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data. However, in real-world scenarios, the underlying causal model is often unknown, and acquiring such human knowledge could be very difficult. In these scenarios, it is risky to directly trust the causal models obtained from information sources with unknown reliability and even causal discovery methods, as incorrect causal models can consequently bring biases to the predictor and lead to unfair predictions. In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE. Specifically, under certain general assumptions, CLAIRE effectively mitigates the biases from the sensitive attribute with a representation learning framework based on counterfactual data augmentation and an invariant penalty. Experiments conducted on both synthetic and real-world datasets validate the superiority of CLAIRE in both counterfactual fairness and prediction performance. 
    more » « less
  2. Abstract Despite significant research, discovering causal relationships from fMRI remains a challenge. Popular methods such as Granger causality and dynamic causal modeling fall short in handling contemporaneous effects and latent common causes. Methods from causal structure learning literature can address these limitations but often scale poorly with network size and need acyclicity. In this study, we first provide a taxonomy of existing methods and compare their accuracy and efficiency on simulated fMRI from simple topologies. This analysis demonstrates a pressing need for more accurate and scalable methods, motivating the design of Causal discovery for Large-scale Low-resolution Time-series with Feedback (CaLLTiF). CaLLTiF is a constraint-based method that uses conditional independence between contemporaneous and lagged variables to extract causal relationships. On simulated fMRI from the macaque connectome, CaLLTiF achieves significantly higher accuracy and scalability than all tested alternatives. From resting-state human fMRI, CaLLTiF learns causal connectomes that are highly consistent across individuals, show clear top-down flow of causal effect from attention and default mode to sensorimotor networks, exhibit Euclidean distance dependence in causal interactions, and are highly dominated by contemporaneous effects. Overall, this work takes a major step in enhancing causal discovery from whole-brain fMRI and defines a new standard for future investigations. 
    more » « less
  3. Abstract Survey questionnaires are commonly used by psychologists and social scientists to measure various latent traits of study subjects. Various causal inference methods such as the potential outcome framework and structural equation models have been used to infer causal effects. However, the majority of these methods assume the knowledge of true causal structure, which is unknown for many applications in psychological and social sciences. This calls for alternative causal approaches for analyzing such questionnaire data. Bayesian networks are a promising option as they do not require causal structure to be knowna prioribut learn it objectively from data. Although we have seen some recent successes of using Bayesian networks to discover causality for psychological questionnaire data, their techniques tend to suffer from causal non-identifiability with observational data. In this paper, we propose the use of a state-of-the-art Bayesian network that is proven to be fully identifiable for observational ordinal data. We develop a causal structure learning algorithm based on an asymptotically justified BIC score function, a hill-climbing search strategy, and the bootstrapping technique, which is able to not only identify a unique causal structure but also quantify the associated uncertainty. Using simulation studies, we demonstrate the power of the proposed learning algorithm by comparing it with alternative Bayesian network methods. For illustration, we consider a dataset from a psychological study of the functional relationships among the symptoms of obsessive-compulsive disorder and depression. Without any prior knowledge, the proposed algorithm reveals some plausible causal relationships. This paper is accompanied by a user-friendly open-source R package OrdCD on CRAN. 
    more » « less
  4. Over the past several years, multiple different methods to measure the causal fairness of machine learning models have been proposed. However, despite the growing number of publications and implementations, there is still a critical lack of literature that explains the interplay of causality-based fairness notions with the social sciences of philosophy, sociology, and law. We hope to remedy this issue by accumulating and expounding upon the thoughts and discussions of causality-based fairness notions produced by both social and formal (specifically machine learning) sciences in this field guide. In addition to giving the mathematical backgrounds of several popular causality-based fair machine learning notions, we explain their connection to and interplay with the fields of philosophy and law. Further, we explore several criticisms of the current approaches to causality-based fair machine learning from a sociological viewpoint as well as from a technical standpoint. It is our hope that this field guide will help fair machine learning practitioners better understand how their causality-based fairness notions align with important humanistic values (such as fairness) and how we can, as a field, design methods and metrics to better serve oppressed and marginalized populaces. 
    more » « less
  5. null (Ed.)
    Software-defined networking (SDN) has emerged as a flexible network architecture for central and programmatic control. Although SDN can improve network security oversight and policy enforcement, ensuring the security of SDN from sophisticated attacks is an ongoing challenge for practitioners. Existing network forensics tools attempt to identify and track such attacks, but holistic causal reasoning across control and data planes remains challenging. We present PicoSDN, a provenance-informed causal observer for SDN attack analysis. PicoSDN leverages fine-grained data and execution partitioning techniques, as well as a unified control and data plane model, to allow practitioners to efficiently determine root causes of attacks and to make informed decisions on mitigating them. We implement PicoSDN on the popular ONOS SDN controller. Our evaluation across several attack case studies shows that PicoSDN is practical for the identification, analysis, and mitigation of SDN attacks. 
    more » « less