skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Smartphone-based Measurements of Deformational Plagiocephaly and Brachycephaly: A Prospective Study
Background: Deformational plagiocephaly and brachycephaly (DPB) is manifested in ~20% of newborns in the US. DPB can be effectively corrected by repositioning and/or physical therapy if detected and monitored before 4 months of age. The cranial index (CI) and cranial vault asymmetry index (CVAI) are used for DPB diagnosis and monitoring. As there is no current tool available for pediatricians or parents to quantitatively measure these indices at the point-of-care, we developed a smartphone app, called SoftSpot, that measures CI and CVAI from photographs of a child’s head to increase the chances of early detection and treatment. Objective: To prospectively evaluate the accuracy of the smartphone measurements of CI and CVAI in a clinical setting. Methods: Bird’s eye-view head photos of 117 infants aged 2-11 months (42 female, 75 male) were captured at a large multidisciplinary craniofacial center with the SoftSpot app (PediaMetrix Inc. Rockville, MD) using an iPhone X (Apple Inc., Cupertino, CA). The study was IRB approved and parent consent was obtained. Measurements included width, length, and diagonals of the patients’ head were obtained by a single CRNP and were used to calculate CI and CVAI as the ground truth. At least five images for each patient were chosen by an analyst, CI and CVAI were automatically measured by the proprietary algorithms of the app, and results were averaged for each patient. Automated and ground truth CI and CVAI measurements were compared using the Bland-Altman method and Spearman Correlation Coefficient after excluding outliers with mean absolute error (MAE) greater than two standard deviations. Results: MAE was 2.47 ± 1.68 for CI, 1.55 ± 1.03 for CVAI. Spearman correlation coefficients were 0.93 and 0.91 (p-values < 0.001) for CI and CVAI, respectively (see Fig. 2). Bland-Altman analysis (see Fig. 2 resulted in limits of agreement of [-4.41, 6.53] for CI and [-3.64, 3.68] for CVAI, with respective biases of 1.06 and 0.02. Conclusion: Our app measures CI and CVAI from head 2D photos with very high correlation to caliper-based measurements obtained in the craniofacial clinic. This prospective study demonstrates the clinical feasibility of using a smartphone app for cranial measurements at the point-of-care with the potential to early detect and monitor DPB. The app can potentially be used in telemedicine encounters when in-person visits are difficult due to circumstances like COVID-19 or for remote and underserved areas.  more » « less
Award ID(s):
2036061
PAR ID:
10325284
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Pediatric Academic Societies Meeting 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background & Purpose: Deformational plagiocephaly and brachycephaly (DPB) is a cranial condition manifested in 20% of infants in the US. DPB affects children and their families through psychological pressure, social stigma, and significant medical costs. If detected between 0-3 months of age, there is strong potential for correction via aggressive repositioning and/or physical therapy if congenital muscular torticollis is present. At later stages, DPB is most effectively treated by more expensive treatments like helmet therapy. Two cranial parameters that can help with the early detection and tracking of DPB are the cranial index (CI) and cranial vault asymmetry index (CVAI). Currently, these measurements are performed with a hand caliper by a specialist, i.e., nurse practitioner (CRNP) or physician assistant who specializes in cleft-craniofacial diagnosis, physical therapist, pediatric plastic/neurosurgeons, or orthotist. To make the measurements frequent, accessible, and accurate at the point of care, i.e., in pediatric offices, we developed and evaluated a mobile app called SoftspotTM to measure CI and CVAI, thus facilitating the early detection and monitoring of DPB. Method/Description: Sequences of bird’s eye-view head photos extracted from video were collected for 77 patients (aged 2 – 11 months, 51 females, 26 males) with an iPhone X (Apple Inc., Cupertino, CA). The head length, width, and diagonals were measured by a single CRNP via hand calipers at a large multidisciplinary cranio-facial center with IRB approval and patient consent. For each patient, five images were chosen by an analyst and segmented into head components, namely the head and nose, using quantitative imaging methods. For each image CI and CVAI were automatically measured, and these measurements were averaged for each patient. Automated CI and CVAI measurements were compared to values obtained by the caliper measurements in terms of mean absolute error (MAE), and outliers were excluded beyond 3 standard deviations away from the average MAE. Results were further analyzed by the Bland-Altman method and Spearman Correlation Coefficient. Results: MAE was 2.18 ± 1.60 for CI and 1.57 ± 1.03 for CVAI measurements. Spearman Correlation Coefficients between measurements and ground truth were 0.93 for CI (p<0.001) and 0.91 for CVAI (p<0.001). Bland-Altman analysis revealed limits of agreement for CI and CVAI as [-4.59, 5.76] (mean = 0.59) and [-3.91, 3.40] (mean = -0.25) respectively. Conclusions: Digital smartphone-based methods for DPB assessment are feasible, and this study demonstrated significant correlation between automated digital measurements and ground truth clinical values. Smartphone-based measurements of DPB can be performed at the point of care to improve the early detection and treatment of DPB. 
    more » « less
  2. Our digital method can measure head shape parameters from head photos with comparable accuracy to expert caliper measurements. This method can be deployed via a smartphone app to enable frequent infant cranial measurements at the point-of-care, and provide decision support tool for pediatricians and care givers. 
    more » « less
  3. Introduction:Seismocardiography (SCG) - measurements of cardiovascular-induced vibrations on the chest - has shown potential for providing clinical information for cardiac conditions. SCG is conventionally recorded by an accelerometer attached to a single point on chest. Recent research suggests multichannel SCG (mSCG) - measurements from multiple chest locations - can provide extra and more accurate clinical information. Current mSCG methods are limited to accelerometer arrays, laser Doppler vibrometry, and airborne ultrasound that are either costly, difficult for inexperienced users, or need bulky equipment, thereby impeding their use beyond research or clinical settings. Hypothesis:mSCG signals can be accurately estimated from tiny chest movements in chest videos recorded by ordinary cameras, e.g., those in smartphones. Methods:We enrolled 10 subjects (sbjs) with no history of CVDs (21.7 ± 1.7 years, 40% women). ECG and chest video of sbjs were recorded at rest for 15 sec during breath hold at the end of inhalation followed by another 15 sec recording during breath hold at the end of exhalation. We developed an AI-powered mobile app to record the chest videos and convert them to 0-30 Hz mSCG in right-to-left (RL) and head-to-foot (HF) directions (Fig 1a). Heart rate (HR) based on ECG RR interval and mSCG was measured and compared. Results:HR estimated from mSCG in both RL and HF directions had a good agreement with ECG-based HR using Bland-Altman analysis [RL: bias = 1.4 bpm, 95% CI = 5.6 bpm; HF: bias = 0.8 bpm, 95% CI = 6.2 bpm (Fig 1b)]. High-quality mSCG and ECG measurements were obtained for all sbjs. Conclusion:Clinically relevant information can be accurately extracted from chest videos using our novel, contactless, AI-based method. Given that the vast majority of Americans have access to a camera phone, future developments of this method may provide new means of remote and accessible cardiac monitoring. 
    more » « less
  4. Chua Chin Heng, Matthew (Ed.)
    Early Childhood Caries (ECC) is the most common childhood disease worldwide and a health disparity among underserved children. ECC is preventable and reversible if detected early. However, many children from low-income families encounter barriers to dental care. An at-home caries detection technology could potentially improve access to dental care regardless of patients’ economic status and address the overwhelming prevalence of ECC. Our team has developed a smartphone application (app), AICaries, that uses artificial intelligence (AI)-powered technology to detect caries using children’s teeth photos. We used mixed methods to assess the acceptance, usability, and feasibility of the AICaries app among underserved parent-child dyads. We conducted moderated usability testing (Step 1) with ten parent-child dyads using "Think-aloud" methods to assess the flow and functionality of the app and analyze the data to refine the app and procedures. Next, we conducted unmoderated field testing (Step 2) with 32 parent-child dyads to test the app within their natural environment (home) over two weeks. We administered the System Usability Scale (SUS) and conducted semi-structured individual interviews with parents and conducted thematic analyses. AICaries app received a 78.4 SUS score from the participants, indicating an excellent acceptance. Notably, the majority (78.5%) of parent-taken photos of children’s teeth were satisfactory in quality for detection of caries using the AI app. Parents suggested using community health workers to provide training to parents needing assistance in taking high quality photos of their young child’s teeth. Perceived benefits from using the AICaries app include convenient at-home caries screening, informative on caries risk and education, and engaging family members. Data from this study support future clinical trial that evaluates the real-world impact of using this innovative smartphone app on early detection and prevention of ECC among low-income children. 
    more » « less
  5. Abstract AimsAccurate cardiac chamber quantification is essential for clinical decisions and ideally should be consistent across different echocardiography systems. This study evaluates variations between the Philips EPIQ CVx (version 9.0.3) and Canon Aplio i900 (version 7.0) in measuring cardiac volumes, ventricular function, and valve structures. Methods and resultsIn this gender-balanced, single-centre study, 40 healthy volunteers (20 females and 20 males) aged 40 years and older (mean age 56.75 ± 11.57 years) were scanned alternately with both systems by the same sonographer using identical settings for both 2D and 4D acquisitions. We compared left ventricular (LV) and right ventricular (RV) volumes using paired t-tests, with significance set at P < 0.05. Correlation and Bland–Altman plots were used for quantities showing significant differences. Two board-certified cardiologists evaluated valve anatomy for each platform. The results showed no significant differences in LV end-systolic volume and LV ejection fraction between platforms. However, LV end-diastolic volume (LVEDV) differed significantly (biplane: P = 0.018; 4D: P = 0.028). Right ventricular (RV) measurements in 4D showed no significant differences, but there were notable disparities in 2D and 4D volumes within each platform (P < 0.01). Significant differences were also found in the LV systolic dyssynchrony index (P = 0.03), LV longitudinal strain (P = 0.04), LV twist (P = 0.004), and LV torsion (P = 0.005). Valve structure assessments varied, with more abnormalities noted on the Philips platform. ConclusionAlthough LV and RV volumetric measurements are generally comparable, significant differences in LVEDV, LV strain metrics, and 2D vs. 4D measurements exist. These variations should be considered when using different platforms for patient follow-ups. 
    more » « less