Background Even before the onset of the COVID-19 pandemic, children and adolescents were experiencing a mental health crisis, partly due to a lack of quality mental health services. The rate of suicide for Black youth has increased by 80%. By 2025, the health care system will be short of 225,000 therapists, further exacerbating the current crisis. Therefore, it is of utmost importance for providers, schools, youth mental health, and pediatric medical providers to integrate innovation in digital mental health to identify problems proactively and rapidly for effective collaboration with other health care providers. Such approaches can help identify robust, reproducible, and generalizable predictors and digital biomarkers of treatment response in psychiatry. Among the multitude of digital innovations to identify a biomarker for psychiatric diseases currently, as part of the macrolevel digital health transformation, speech stands out as an attractive candidate with features such as affordability, noninvasive, and nonintrusive. Objective The protocol aims to develop speech-emotion recognition algorithms leveraging artificial intelligence/machine learning, which can establish a link between trauma, stress, and voice types, including disrupting speech-based characteristics, and detect clinically relevant emotional distress and functional impairments in children and adolescents. Methods Informed by theoretical foundations (the Theory of Psychological Trauma Biomarkers and Archetypal Voice Categories), we developed our methodology to focus on 5 emotions: anger, happiness, fear, neutral, and sadness. Participants will be recruited from 2 local mental health centers that serve urban youths. Speech samples, along with responses to the Symptom and Functioning Severity Scale, Patient Health Questionnaire 9, and Adverse Childhood Experiences scales, will be collected using an Android mobile app. Our model development pipeline is informed by Gaussian mixture model (GMM), recurrent neural network, and long short-term memory. Results We tested our model with a public data set. The GMM with 128 clusters showed an evenly distributed accuracy across all 5 emotions. Using utterance-level features, GMM achieved an accuracy of 79.15% overall, while frame selection increased accuracy to 85.35%. This demonstrates that GMM is a robust model for emotion classification of all 5 emotions and that emotion frame selection enhances accuracy, which is significant for scientific evaluation. Recruitment and data collection for the study were initiated in August 2021 and are currently underway. The study results are likely to be available and published in 2024. Conclusions This study contributes to the literature as it addresses the need for speech-focused digital health tools to detect clinically relevant emotional distress and functional impairments in children and adolescents. The preliminary results show that our algorithm has the potential to improve outcomes. The findings will contribute to the broader digital health transformation. International Registered Report Identifier (IRRID) DERR1-10.2196/46970 
                        more » 
                        « less   
                    
                            
                            A call for open data to develop mental health digital biomarkers
                        
                    
    
            Digital biomarkers of mental health, created using data extracted from everyday technologies including smartphones, wearable devices, social media and computer interactions, have the opportunity to revolutionise mental health diagnosis and treatment by providing near-continuous unobtrusive and remote measures of behaviours associated with mental health symptoms. Machine learning models process data traces from these technologies to identify digital biomarkers. In this editorial, we caution clinicians against using digital biomarkers in practice until models are assessed for equitable predictions (‘model equity’) across demographically diverse patients at scale, behaviours over time, and data types extracted from different devices and platforms. We posit that it will be difficult for any individual clinic or large-scale study to assess and ensure model equity and alternatively call for the creation of a repository of open de-identified data for digital biomarker development. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1750326
- PAR ID:
- 10325326
- Date Published:
- Journal Name:
- BJPsych Open
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2056-4724
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The development of digital instruments for mental health monitoring using biosensor data from wearable devices can enable remote, longitudinal, and objective quantitative benchmarks. To survey developments and trends in this field, we conducted a systematic review of artificial intelligence (AI) models using data from wearable biosensors to predict mental health conditions and symptoms. Following PRISMA guidelines, we identified 48 studies using a variety of wearable and smartphone biosensors including heart rate, heart rate variability (HRV), electrodermal activity/galvanic skin response (EDA/GSR), and digital proxies for biosignals such as accelerometry, location, audio, and usage metadata. We observed several technical and methodological challenges across studies in this field, including lack of ecological validity, data heterogeneity, small sample sizes, and battery drainage issues. We outline several corresponding opportunities for advancement in the field of AI-driven biosensing for mental health.more » « less
- 
            Advances in computer science and data-analytic methods are driving a new era in mental health research and application. Artificial intelligence (AI) technologies hold the potential to enhance the assessment, diagnosis, and treatment of people experiencing mental health problems and to increase the reach and impact of mental health care. However, AI applications will not mitigate mental health disparities if they are built from historical data that reflect underlying social biases and inequities. AI models biased against sensitive classes could reinforce and even perpetuate existing inequities if these models create legacies that differentially impact who is diagnosed and treated, and how effectively. The current article reviews the health-equity implications of applying AI to mental health problems, outlines state-of-the-art methods for assessing and mitigating algorithmic bias, and presents a call to action to guide the development of fair-aware AI in psychological science.more » « less
- 
            While one can characterize mental health using questionnaires, such tools do not provide direct insight into the underlying biology. By linking approaches that visualize brain activity to questionnaires in the context of individualized prediction, we can gain new insights into the biology and behavioral aspects of brain health. Resting-state fMRI (rs-fMRI) can be used to identify biomarkers of these conditions and study patterns of abnormal connectivity. In this work, we estimate mental health quality for individual participants using static functional network connectivity (sFNC) data from rs-fMRI. The deep learning model uses the sFNC data as input to predict four categories of mental health quality and visualize the neural patterns indicative of each group. We used guided gradient class activation maps (guided Grad-CAM) to identify the most discriminative sFNC patterns. The effectiveness of this model was validated using the UK Biobank dataset, in which we showed that our approach outperformed four alternative models by 4-18% accuracy. The proposed model’s performance evaluation yielded a classification accuracy of 76%, 78%, 88%, and 98% for the excellent, good, fair, and poor mental health categories, with poor mental health accuracy being the highest. The findings show distinct sFNC patterns across each group. The patterns associated with excellent mental health consist of the cerebellar-subcortical regions, whereas the most prominent areas in the poor mental health category are in the sensorimotor and visual domains. Thus the combination of rs-fMRI and deep learning opens a promising path for developing a comprehensive framework to evaluate and measure mental health. Moreover, this approach had the potential to guide the development of personalized interventions and enable the monitoring of treatment response. Overall this highlights the crucial role of advanced imaging modalities and deep learning algorithms in advancing our understanding and management of mental health.more » « less
- 
            Sleep behavior significantly impacts health and acts as an indicator of physical and mental well-being. Monitoring and predicting sleep behavior with ubiquitous sensors may therefore assist in both sleep management and tracking of related health conditions. While sleep behavior depends on, and is reflected in the physiology of a person, it is also impacted by external factors such as digital media usage, social network contagion, and the surrounding weather. In this work, we propose SleepNet, a system that exploits social contagion in sleep behavior through graph networks and integrates it with physiological and phone data extracted from ubiquitous mobile and wearable devices for predicting next-day sleep labels about sleep duration. Our architecture overcomes the limitations of large-scale graphs containing connections irrelevant to sleep behavior by devising an attention mechanism. The extensive experimental evaluation highlights the improvement provided by incorporating social networks in the model. Additionally, we conduct robustness analysis to demonstrate the system's performance in real-life conditions. The outcomes affirm the stability of SleepNet against perturbations in input data. Further analyses emphasize the significance of network topology in prediction performance revealing that users with higher eigenvalue centrality are more vulnerable to data perturbations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    