BackgroundThe occupational burnout epidemic is a growing issue, and in the United States, up to 60% of medical students, residents, physicians, and registered nurses experience symptoms. Wearable technologies may provide an opportunity to predict the onset of burnout and other forms of distress using physiological markers. ObjectiveThis study aims to identify physiological biomarkers of burnout, and establish what gaps are currently present in the use of wearable technologies for burnout prediction among health care professionals (HCPs). MethodsA comprehensive search of several databases was performed on June 7, 2022. No date limits were set for the search. The databases were Ovid: MEDLINE(R), Embase, Healthstar, APA PsycInfo, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Web of Science Core Collection via Clarivate Analytics, Scopus via Elsevier, EBSCOhost: Academic Search Premier, CINAHL with Full Text, and Business Source Premier. Studies observing anxiety, burnout, stress, and depression using a wearable device worn by an HCP were included, with HCP defined as medical students, residents, physicians, and nurses. Bias was assessed using the Newcastle Ottawa Quality Assessment Form for Cohort Studies. ResultsThe initial search yielded 505 papers, from which 10 (1.95%) studies were included in this review. The majority (n=9) used wrist-worn biosensors and described observational cohort studies (n=8), with a low risk of bias. While no physiological measures were reliably associated with burnout or anxiety, step count and time in bed were associated with depressive symptoms, and heart rate and heart rate variability were associated with acute stress. Studies were limited with long-term observations (eg, ≥12 months) and large sample sizes, with limited integration of wearable data with system-level information (eg, acuity) to predict burnout. Reporting standards were also insufficient, particularly in device adherence and sampling frequency used for physiological measurements. ConclusionsWith wearables offering promise for digital health assessments of human functioning, it is possible to see wearables as a frontier for predicting burnout. Future digital health studies exploring the utility of wearable technologies for burnout prediction should address the limitations of data standardization and strategies to improve adherence and inclusivity in study participation. 
                        more » 
                        « less   
                    This content will become publicly available on April 1, 2026
                            
                            Fusing Wearable Biosensors with Artificial Intelligence for Mental Health Monitoring: A Systematic Review
                        
                    
    
            The development of digital instruments for mental health monitoring using biosensor data from wearable devices can enable remote, longitudinal, and objective quantitative benchmarks. To survey developments and trends in this field, we conducted a systematic review of artificial intelligence (AI) models using data from wearable biosensors to predict mental health conditions and symptoms. Following PRISMA guidelines, we identified 48 studies using a variety of wearable and smartphone biosensors including heart rate, heart rate variability (HRV), electrodermal activity/galvanic skin response (EDA/GSR), and digital proxies for biosignals such as accelerometry, location, audio, and usage metadata. We observed several technical and methodological challenges across studies in this field, including lack of ecological validity, data heterogeneity, small sample sizes, and battery drainage issues. We outline several corresponding opportunities for advancement in the field of AI-driven biosensing for mental health. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10596257
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Biosensors
- Volume:
- 15
- Issue:
- 4
- ISSN:
- 2079-6374
- Page Range / eLocation ID:
- 202
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Digital biomarkers of mental health, created using data extracted from everyday technologies including smartphones, wearable devices, social media and computer interactions, have the opportunity to revolutionise mental health diagnosis and treatment by providing near-continuous unobtrusive and remote measures of behaviours associated with mental health symptoms. Machine learning models process data traces from these technologies to identify digital biomarkers. In this editorial, we caution clinicians against using digital biomarkers in practice until models are assessed for equitable predictions (‘model equity’) across demographically diverse patients at scale, behaviours over time, and data types extracted from different devices and platforms. We posit that it will be difficult for any individual clinic or large-scale study to assess and ensure model equity and alternatively call for the creation of a repository of open de-identified data for digital biomarker development.more » « less
- 
            Shift work disrupts sleep and causes chronic stress, resulting in burnout syndrome characterized by emotional exhaustion, depersonalization, and decreased personal accomplishment. Continuous biometric data collected through wearable devices contributes to mental health research. However, direct prediction of burnout risk is still limited, and interpreting machine learning (ML) models in healthcare poses challenges. In this paper, we develop machine learning models that utilize wearable and survey data, including rhythm features, to predict burnout risk among shift workers. Additionally, we employ the DiCE (Diverse Counterfactual Explanations) framework to generate interpretable explanations for the ML model, aiding in the management of burnout risks. Our experiments on the AMED dataset show that incorporating rhythm features significantly enhances the predictive performance of our models. Specifically, sleep and heart rate features have emerged as significant indicators for accurately predicting burnout riskmore » « less
- 
            Overindulgence of harmful substances such as drugs or alcohol, called substance abuse, can directly affect a person's health and their day-to-day activities. The younger population become more vulnerable to such use of psychoactive substances due to lack of awareness of the long-term hazardous effects these substances can have on their health. Additionally, these individuals tend to develop severe mental disorders as they grow older. With the boom of Internet of Things (IoT), the use of wearable sensors such as smartwatches and smartphones has tremendously increased. These wearables help in monitoring a person's physiological signal and keep them informed of one's health. In this research, we propose an edge-intelligent IoT-based wearable that can assist in substance-abuse detection by monitoring their physiological signals on daily basis. The proposed system helps in monitoring the substance abuse and craving of the individual and help the healthcare provider to start an early intervention as required. The proposed system is validated using a custom-built wearable, i-SAD, which was developed as a dedicated substance abuse wearable using commercially available off-the-shelf components. The proposed wearable design was validated using medical quality wearable and yielded a correlation of 0.89 for accelerometer values and 0.92 for average heart rate values.more » « less
- 
            The skyrocketing popularity of health monitoring has spurred increasing interest in wearable electrochemical biosensors. Compared with the traditionally rigid and bulky electrochemical biosensors, flexible and stretchable devices render a unique capability to conform to the complex, hierarchically textured surfaces of the human body. With a recognition element (e.g., enzymes, antibodies, nucleic acids, ions) to selectively react with the target analyte, wearable electrochemical biosensors can convert the types and concentrations of chemical changes in the body into electrical signals for easy readout. Initial exploration of wearable electrochemical biosensors integrates electrodes on textile and flexible thin-film substrate materials. A stretchable property is needed for the thin-film device to form an intimate contact with the textured skin surface and to deform with various natural skin motions. Thus, stretchable materials and structures have been exploited to ensure the effective function of a wearable electrochemical biosensor. In this mini-review, we summarize the recent development of flexible and stretchable electrochemical biosensors, including their principles, representative application scenarios (e.g., saliva, tear, sweat, and interstitial fluid), and materials and structures. While great strides have been made in the wearable electrochemical biosensors, challenges still exist, which represents a small fraction of opportunities for the future development of this burgeoning field.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
