Abstract. Biogenic organic precursors play an important role inatmospheric new particle formation (NPF). One of the major precursor speciesis α-pinene, which upon oxidation can form a suite of productscovering a wide range of volatilities. Highly oxygenated organic molecules(HOMs) comprise a fraction of the oxidation products formed. While it isknown that HOMs contribute to secondary organic aerosol (SOA) formation,including NPF, they have not been well studied in newly formed particles dueto their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures(−50 and −30 ∘C) and relativehumidities (20 % and 60 %) relevant in the upper free troposphere. Themeasurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD)chamber. The particle chemical composition was analyzed by a thermaldesorption differential mobility analyzer (TD-DMA) coupled to a nitratechemical ionization–atmospheric pressure interface–time-of-flight(CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Ourmeasurements revealed the presence of C8−10 monomers and C18−20dimers as the major compounds in the particles (diameter up to∼ 100 nm). Particularly, for the system with isoprene added,C5 (C5H10O5−7) and C15 compounds(C15H24O5−10) were detected. This observation is consistentwith the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate,our measurements indicate that they can still contribute to the particlegrowth at free tropospheric conditions. For the experiments reported here,most likely isoprene oxidation products enhance the growth of particleslarger than 15 nm. Additionally, we report on the nucleation rates measuredat 1.7 nm (J1.7 nm) and compared with previous studies, we found lowerJ1.7 nm values, very likely due to the higher α-pinene andozone mixing ratios used in the present study.
more »
« less
Perspective on the Recent Measurements of Reduced Nitrogen Compounds in the Atmosphere
Reduced-nitrogen compounds (RNC), such as ammonia and amines, play important roles in atmospheric aerosol nucleation, secondary organic aerosol (SOA), and cloud formation processes. Fast measurements of ammonia and amines are made with a chemical ionization mass spectrometer (CIMS). Clusters containing RNC are measured with an atmospheric pressure interface time of flight mass spectrometer (APi-TOF) or chemical ionization APi-TOF (CI-APi-TOF). Aerosol-phase amines can be detected with a single particle mass spectrometer at real-time, or with offline chemical analytical methods using filter samples. However, the application of these instruments in real atmospheric measurements is still very limited. This perspective article highlights recent measurements of RNC in the atmosphere and discusses their implications in new particle formation (NPF).
more »
« less
- PAR ID:
- 10325409
- Date Published:
- Journal Name:
- Frontiers in Environmental Science
- Volume:
- 10
- ISSN:
- 2296-665X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and β-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m −3 in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level.more » « less
-
Abstract. Ammonia and amines play critical roles in secondary aerosol formation, especially in urban environments. However, fast measurements of ammonia and amines in the atmosphere are very scarce. We measured ammonia and amines with a chemical ionization mass spectrometer (CIMS) at the urban center in Houston, Texas, the fourth most populated urban site in the United States, during October 2022. Ammonia concentrations were on average four parts per billion by volume (ppbv), while the concentration of an individual amine ranged from several parts per trillion by volume (pptv) to hundreds of pptv. These reduced nitrogen compounds were more abundant during weekdays than on weekends and correlated with measured CO concentrations, implying they were mostly emitted from pollutant sources. Both ammonia and amines showed a distinct diurnal cycle, with higher concentrations in the warmer afternoon, indicating dominant gas-to-particle conversion processes taking place with the changing ambient temperatures. Studies have shown that dimethylamine is critical for new particle formation (NPF) in the polluted boundary layer, but currently there are no amine emission inventories in global climate models (as opposed to ammonia). Our observations made in the very polluted area of Houston, as well as a less polluted site (Kent, Ohio) from our previous study (You et al., 2014), indicate there is a consistent ratio of dimethylamine over ammonia at these two sites. Thus, our observations can provide a relatively constrained proxy of dimethylamine using 0.1 % ammonia concentrations at polluted sites in the United States to model NPF processes.more » « less
-
Abstract RationaleContaminants present in ambient air or in sampling lines can interfere with the target analysis through overlapping peaks or causing a high background. This study presents a positive outcome from the unexpected presence ofN‐methyl‐2‐pyrrolidone, released from a PALL HEPA filter, in the analysis of atmospherically relevant gas‐phase amines using chemical ionization mass spectrometry. MethodsGas‐phase measurements were performed using a triple quadrupole mass spectrometer equipped with a modified atmospheric pressure gas chromatography (APGC) source which allows sampling of the headspace above pure amine standards. Gas‐phaseN‐methyl‐2‐pyrrolidone (NMP) emitted from a PALL HEPA filter located in the inlet stream served as the ionizing agent. ResultsThis study demonstrates that some alkylamines efficiently form a [NMP + amine+H]+cluster with NMP upon chemical ionization at atmospheric pressure. The extent of cluster formation depends largely on the proton affinity of the amine compared with that of NMP. Aromatic amines (aniline, pyridine) and diamines (putrescine) were shown not to form cluster ions with NMP. ConclusionsThe use of NMP as an ionizing agent with stand‐alone APGC provided high sensitivity for ammonia and the smaller amines. The main advantages, in addition to sensitivity, are direct sampling into the APGC source and avoiding uptake on sampling lines which can be a significant problem with ammonia and amines.more » « less
-
Abstract. Currently, the complete chemical characterization of nanoparticles(< 100 nm) represents an analytical challenge, since these particlesare abundant in number but have negligible mass. Several methods forparticle-phase characterization have been recently developed to betterdetect and infer more accurately the sources and fates of sub-100 nmparticles, but a detailed comparison of different approaches is missing.Here we report on the chemical composition of secondary organic aerosol(SOA) nanoparticles from experimental studies of α-pinene ozonolysisat −50, −30, and −10 ∘C and intercompare the results measured by differenttechniques. The experiments were performed at the Cosmics Leaving OUtdoorDroplets (CLOUD) chamber at the European Organization for Nuclear Research(CERN). The chemical composition was measured simultaneously by fourdifferent techniques: (1) thermal desorption–differential mobility analyzer(TD–DMA) coupled to a NO3- chemical ionization–atmospheric-pressure-interface–time-of-flight (CI–APi–TOF) massspectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to anI− high-resolution time-of-flight chemical ionization mass spectrometer(HRToF-CIMS), (3) extractive electrospray Na+ ionizationtime-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis offilters (FILTER) using ultra-high-performance liquid chromatography (UHPLC)and heated electrospray ionization (HESI) coupled to an Orbitraphigh-resolution mass spectrometer (HRMS). Intercomparison was performed bycontrasting the observed chemical composition as a function of oxidationstate and carbon number, by estimating the volatility and comparing thefraction of volatility classes, and by comparing the thermal desorptionbehavior (for the thermal desorption techniques: TD–DMA and FIGAERO) andperforming positive matrix factorization (PMF) analysis for the thermograms.We found that the methods generally agree on the most important compoundsthat are found in the nanoparticles. However, they do see different parts ofthe organic spectrum. We suggest potential explanations for thesedifferences: thermal decomposition, aging, sampling artifacts, etc. Weapplied PMF analysis and found insights of thermal decomposition in theTD–DMA and the FIGAERO.more » « less
An official website of the United States government

