skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: The efficacy of Lewis affinity scale metrics to represent solvent interactions with reagent salts in all-inorganic metal halide perovskite solutions
Solvents employed in the solution processing of metal halide perovskites are known to play a key role in defining the morphology and properties of the resulting thin film, and thus the performance of perovskite solar cell devices. Accurate metrics are needed that are capable of differentiating among candidates, finding solvents that adequately solubilize the various precursor species in solution and facilitate the nucleation and growth of these materials. Existing metrics such as the unsaturated Mayer bond order (UMBO) and the Gutmann donor number (DN) have been tested for lead iodide perovskite systems; but there has yet to be a comprehensive study on their transferability to lead-free perovskite solutions. We use ab initio methods (density functional theory) and regression analysis tools to study the usefulness of DN and BF 3 affinity scales in this regard. We compared the relative effectiveness of these scales to describe interactions between solvents and BX n perovskite salts of lead (Pb 2+ ), tin (Sn 2+ and Sn 4+ ), germanium (Ge 2+ ), bismuth (Bi 3+ ), and antimony (Sb 3+ and Sb 5+ ). The DN proved to be a better representation than the BF 3 of such interactions, reflecting the closer similarity of these species to the “parent” SbCl 5 Lewis acid than to BF 3 . In addition, we have uncovered the usefulness of the lithium cation affinity metric (LCA) to describe the strength of interactions between solvents and A-site cations ( e.g. Na + , K + , Rb + and Cs + ) in all-inorganic metal halide perovskite solutions. We find that the coordination strengths of solvents towards species in all-inorganic metal halide perovskite solutions are best described by two different metrics with distinct modes of action: DN differentiates among BX n salt complexes, and LCA among A-site cation species. This revelation can help guide the choice of solvent to optimize processing conditions. It also emphasizes the importance of selecting solvents whose DN and LCA optimize coordination to key Lewis acid species in all-inorganic perovskite solutions.  more » « less
Award ID(s):
1719875
NSF-PAR ID:
10325420
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
9
Issue:
22
ISSN:
2050-7488
Page Range / eLocation ID:
13087 to 13099
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recently, the evolved intermediate phase based on iodoplumbate anions that mediates perovskite crystallization has been embodied as the Lewis acid–base adduct formed by metal halides (serve as Lewis acid) and polar aprotic solvents (serve as Lewis base). Based on this principle, it is proposed to constitute efficient Lewis acid–base adduct in the SnI2deposition step to modulate its volume expansion and fast reaction with methylammonium iodide (MAI)/formamidinium iodide (FAI) (FAI is studied hereafter). Herein, trimethylamine (TMA) is employed as the additional Lewis base in the tin halide solution to form SnY2–TMA complexes (Y = I, F) in the first‐step deposition, followed by intercalating with FAI to convert into FASnI. It is shown that TMA can facilitate homogeneous film formation of a SnI2(+SnF2) layer by effectively forming intermediate SnY2–TMA complexes. Meanwhile, its relatively larger size and weaker affinity with SnI2than FA+ ions will facilitate the intramolecular exchange with FA+ ions, thereby enabling the formation of dense and compact FASnI3film with large crystalline domain (>1 µm). As a result, high power conversion efficiencies of 4.34% and 7.09% with decent stability are successfully accomplished in both conventional and inverted perovskite solar cells, respectively.

     
    more » « less
  2. Blue emitting Sn-based lead-free halide perovskite nanocrystals (NCs) are considered to be a promising material in lighting and displays. However, industrialised fabrication of blue-emitting NCs still remains a significant challenge due to the use of toxic solvents and optical instability, not mentioning in large-scale synthesis. In this work, a green-route synthesis of blue-emitting lead-free halide perovskite Cs 2 SnCl 6 powders is developed, in which deionized water with a small amount of inorganic acid is used as the solvent and the synthesis of the Cs 2 SnCl 6 powders is achieved on a microfluidic platform. Using the Cs 2 SnCl 6 powders, we prepare Cs 2 SnCl 6 NCs via an ultrasonication process. Changing the volume ratio of the ligands (oleic acid to oleylamine) can alter the photoluminescence (PL) characteristics of the prepared NCs, including the PL-peak wavelength, PL-peak intensity and quantum yield. The highest photoluminescence quantum yield (PLQY) of 13.4% is achieved by the Cs 2 SnCl 6 NCs prepared with the volume ratio of oleic acid to oleylamine of 40 μL to 10 μL. A long-term PL stability test demonstrates that the as-synthesized Cs 2 SnCl 6 NCs can retain a stable PLQY over a period of 60 days. This work opens up a new path for a large-scale green-route synthesis of blue-emitting Sn-based lead-free NCs, such as Cs 2 SnX 6 (Cl, Br and I), towards their applications in optoelectronics. 
    more » « less
  3. Abstract

    Molecular I2can be produced from iodide‐based lead perovskites under thermal stress; triiodide, I3, is formed from this I2and I. Triiodide attacks protic cation MA+‐ or FA+‐based lead halide perovskites (MA+, methylammonium; FA+, formamidinium) as explicated through solution‐based nuclear magnetic resonance (NMR) studies: triiodide has strong hydrogen‐bonding affinity for MA+or FA+, which leads to their deprotonation and perovskite decomposition. Triiodide is a catalyst for this decomposition that can be obviated through perovskite surface treatment with thiol reducing agents. In contrast to methods using thiol incorporation into perovskite precursor solutions, no penetration of the thiol into the bulk perovskite is observed, yet its surface application stabilizes the perovskite against triiodide‐mediated thermal stress. Thiol applied to the interface between FAPbI3and Spiro‐OMeTAD (“Spiro”) prevents oxidized iodine species penetration into Spiro and thus preserves its hole‐transport efficacy. Surface‐applied thiol affects the perovskite work function; it ameliorates hole injection into the Spiro overlayer, thus improving device performance. It helps to increase interfacial adhesion (“wetting”): fewer voids are observed at the Spiro/perovskite interface if thiols are applied. Perovskite solar cells (PSCs) incorporating interfacial thiol treatment maintain over 80% of their initial power conversion efficiency (PCE) after 300 h of 85 °C thermal stress.

     
    more » « less
  4. Abstract

    Understanding the origin and distribution of electronic gap states in metal halide perovskite (MHP) thin films is crucial to the further improvement of the efficiency and long‐term stability of MHP‐based optoelectronic devices. In this work, the impact of Lewis‐basic additives introduced in the precursor solution on the density of states in the perovskite bandgap is investigated. Ultraviolet photoemission spectroscopy and contact potential difference measurements are conducted on MHP thin films processed from dimethylformamide (DMF)‐based solutions to which either no additive, dimethylsulfoxide (DMSO), orN‐methylpyrrolidine‐2‐thione (NMPT) is added. The results show the presence of a density of states in the gap of methylammonium lead halide films processed from DMSO‐containing solution. The density of gap states is either suppressed when the methylammonium concentration in mixed cation films is reduced or when NMPT is used as an additive, and eliminated when methylammonium (MA) is replaced with cesium or formamidinium (FA). These results are consistent with the notion that reaction products that result from DMSO reacting with MA+in the precursor solution are responsible for the formation of gap states.

     
    more » « less
  5. Abstract

    High‐performance tin‐lead perovskite solar cells (PSCs) are needed for all‐perovskite‐tandem solar cells. However, iodide related fast photodegradation severely limits the operational stability of Sn‐Pb perovskites despite the demonstrated high efficiency and thermal stability. Herein, this work employs an alkylammonium pseudo‐halogen additive to enhance the power conversion efficiency (PCE) and photostability of methylammonium (MA)‐free, Sn‐Pb PSCs. Density functional theory (DFT) calculations reveal that the pseudo‐halogen tetrafluoroborate (BF4) has strong binding capacity with metal ions (Sn2+/Pb2+) in the Sn‐Pb perovskite lattice, which lowers iodine vacancy formation. Upon combining BF4with an octylammonium (OA+) cation, the PCE of the device with a built‐in light‐scattering layer is boosted to 23.7%, which represents a new record for Sn‐Pb PSCs. The improved efficiency benefits from the suppressed defect density. Under continuous 1 sun illumination, the OABF4embodied PSCs show slower generation of interstitial iodides and iodine, which greatly improves the device photostability under open‐circuit condition. Moreover, the device based on OABF4retains 88% of the initial PCE for 1000 h under the maximum‐power‐point tracking (MPPT) without cooling.

     
    more » « less