Consider the task of dividing a state into k contiguous political districts whose populations must not differ by more than one person, following current practice for congressional districting in the USA. A widely held belief among districting experts is that this task requires at least k − 1 county splits. This statement has appeared in expert testimony, special master reports, and Supreme Court oral arguments. In this article, we seek to dispel this belief. To illustrate, we find plans for several states that use zero county splits, that is, all counties are kept whole, despite satisfying contiguity and 1-person deviation. This is not a rare phenomenon; states like Iowa and Montana admit hundreds, thousands, or tens of thousands of such plans. In practice, mapmakers may need to satisfy additional criteria, like compactness, minority representation, and partisan fairness, which may lead them to believe k − 1 splits to be minimum. Again, this need not be true. To illustrate, we conduct short case studies for North Carolina (for partisan fairness) and Alabama (for minority representation). Contrary to expert testimony and Supreme Court oral arguments from Allen v. Milligan (2023), we find that fewer than k − 1 county splits suffices, even when subjected to these additional criteria. This demonstrates our narrow point that k − 1 county splits should not be assumed minimum and also suggests that districting criteria do not conflict as much as people sometimes believe. The optimization methods proposed in this article are flexible and can assist mapmakers in satisfying them.
more »
« less
Imposing Contiguity Constraints in Political Districting Models
Beginning in the 1960s, techniques from operations research began to be used to generate political districting plans. A classical example is the integer programming model of Hess et al. [Hess SW, Weaver JB, Siegfeldt HJ, Whelan JN, Zitlau PA ( 1965 ) Oper. Res. 13(6):998–1006.]. Because of the model’s compactness-seeking objective, it tends to generate contiguous or nearly contiguous districts, although none of the model’s constraints explicitly impose contiguity. Consequently, Hess et al. had to manually adjust their solutions to make them contiguous. Since then, there have been several attempts to adjust the Hess model and other models so that contiguity is explicitly ensured. In this paper, we review two existing models for imposing contiguity, propose two new ones, and analytically compare them in terms of their strength and size. We conduct an extensive set of numerical experiments to evaluate their performance. Although many believe that contiguity constraints are particularly difficult to deal with, we find that the districting problem considered by Hess et al. does not become harder when contiguity is imposed. In fact, a branch-and-cut implementation of a cut-based model generates, for the first time, optimally compact districting plans for 21 different U.S. states at the census tract level. To encourage future research in this area, and for purposes of transparency, we make our test instances and source code publicly available.
more »
« less
- Award ID(s):
- 1942065
- PAR ID:
- 10325475
- Date Published:
- Journal Name:
- Operations Research
- Volume:
- 70
- Issue:
- 2
- ISSN:
- 0030-364X
- Page Range / eLocation ID:
- 867 to 892
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper introduces the concept of Language- Guided World Models (LWMs)—probabilistic models that can simulate environments by read- ing texts. Agents equipped with these models provide humans with more extensive and effi- cient control, allowing them to simultaneously alter agent behaviors in multiple tasks via nat- ural verbal communication. In this work, we take initial steps in developing robust LWMs that can generalize to compositionally novel language descriptions. We design a challenging world modeling benchmark based on the game of MESSENGER (Hanjie et al., 2021), featuring evaluation settings that require varying degrees of compositional generalization. Our exper- iments reveal the lack of generalizability of the state-of-the-art Transformer model, as it of- fers marginal improvements in simulation qual- ity over a no-text baseline. We devise a more robust model by fusing the Transformer with the EMMA attention mechanism (Hanjie et al., 2021). Our model substantially outperforms the Transformer and approaches the perfor- mance of a model with an oracle semantic pars- ing and grounding capability. To demonstrate the practicality of this model in improving AI safety and transparency, we simulate a scenario in which the model enables an agent to present plans to a human before execution, and to re- vise plans based on their language feedback.more » « less
-
Visual features are a promising signal for learning bootstrap textual models. However, blackbox learning models make it difficult to isolate the specific contribution of visual components. In this analysis, we consider the case study of the Visually Grounded Neural Syntax Learner (Shi et al., 2019), a recent approach for learning syntax from a visual training signal. By constructing simplified versions of the model, we isolate the core factors that yield the model’s strong performance. Contrary to what the model might be capable of learning, we find significantly less expressive versions produce similar predictions and perform just as well, or even better. We also find that a simple lexical signal of noun concreteness plays the main role in the model’s predictions as opposed to more complex syntactic reasoning.more » « less
-
The visualization community has seen a rise in the adoption of user studies. Empirical user studies systematically test the assumptions that we make about how visualizations can help or hinder viewers’ performance of tasks. Although the increase in user studies is encouraging, it is vital that research on human reasoning with visualizations be grounded in an understanding of how the mind functions. Previously, there were no sufficient models that illustrate the process of decision-making with visualizations. However, Padilla et al. [41] recently proposed an integrative model for decision-making with visualizations, which expands on modern theories of visualization cognition and decision-making. In this paper, we provide insights into how cognitive models can accelerate innovation, improve validity, and facilitate replication efforts, which have yet to be thoroughly discussed in the visualization community. To do this, we offer a compact overview of the cognitive science of decision-making with visualizations for the visualization community, using the Padilla et al. [41] cognitive model as a guiding framework. By detailing examples of visualization research that illustrate each component of the model, this paper offers novel insights into how visualization researchers can utilize a cognitive framework to guide their user studies. We provide practical examples of each component of the model from empirical studies of visualizations, along with visualization implications of each cognitive process, which have not been directly addressed in prior work. Finally, this work offers a case study in utilizing an understanding of human cognition to generate a novel solution to a visualization reasoning bias in the context of hurricane forecast track visualizations.more » « less
-
Hallucinations in large language models (LLMs), where they generate fluent but factually incorrect outputs, pose challenges for applications requiring strict truthfulness. This work proposes a multi-faceted approach to detect such hallucinations across various language tasks. We leverage automatic data annotation using a proprietary LLM, fine-tuning of the Mistral-7B-instruct-v0.2 model on annotated and benchmark data, role-based and rationale-based prompting strategies, and an ensemble method combining different model outputs through majority voting. This comprehensive framework aims to improve the robustness and reliability of hallucination detection for LLM generations. Code and data1 1 Introduction The modern natural language generation (NLG) (OpenAI et al., 2023; Touvron et al., 2023) landscape faces two interconnected challenges: firstly, current neural models have a tendency to produce f luent yet inaccurate outputs, and secondly, our evaluation metrics are better suited for assessing f luency rather than correctness(Bang et al., 2023; Guerreiro et al., 2023). This phenomenon, known as "hallucination," (Ji et al., 2023) where neural networks generate plausible-sounding but factually incorrect outputs, is a significant hurdle, especially for NLG applications that require strict adherence to correctness. For instance, in machine translation(Lee et al., 2019), producing a fluent translation that deviates from the source text’s meaning renders the entire translation pipeline unreliable. This issue may arise as LLMs are trained on vast amounts of data from the internet, which can contain inaccuracies, biases, and false information. Also, it may arise due improper representations learned during training even if good quality data is 1https://github.com/souvikdgp16/shroom_compos_mentis used. As a result, LLMs can sometimes hallucinate or fabricate details, especially when prompted to discuss topics outside their training data or make inferences beyond their capabilities. Hallucination detection (Liu et al., 2022), also known as factual verification or truthfulness evaluation, identifies and mitigates these hallucinations in the outputs of LLMs. This is an active area of research and development, as it is crucial for ensuring the reliability and trustworthiness of LLMgenerated content, particularly in high-stakes domains such as healthcare, finance, and legal applications. In this task, the primary focus will be to classify whether a generation is hallucinated. This work proposes a multi-faceted approach to detecting hallucinations in large language models.more » « less
An official website of the United States government

