skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-monochromatic He I and He II UPS spectra of polycrystalline silver
Award ID(s):
1719875
PAR ID:
10325667
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Surface Science Spectra
Volume:
29
Issue:
1
ISSN:
1055-5269
Page Range / eLocation ID:
014011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate how well BERT performs on predicting factuality in several existing English datasets, encompassing various linguistic constructions. Although BERT obtains a strong performance on most datasets, it does so by exploiting common surface patterns that correlate with certain factuality labels, and it fails on instances where pragmatic reasoning is necessary. Contrary to what the high performance suggests, we are still far from having a robust system for factuality prediction. 
    more » « less
  2. The Pauli exclusion principle combined with interactions between fermions is a unifying basic mechanism that can give rise to quantum phases with spin order in diverse physical systems. Transition-metal ferromagnets, with isotropic ordering respecting crystallographic rotation symmetries and with a net magnetization, are a relatively common manifestation of this mechanism, leading to numerous practical applications, e.g., in spintronic information technologies. In contrast, superfluid 3He has been a unique and fragile manifestation, in which the spin-ordered phase is anisotropic, breaking the real-space rotation symmetries, and has zero net magnetization. The recently discovered altermagnets share the spin-ordered anisotropic zero-magnetization nature of superfluid $^3$He. Yet, altermagnets appear to be even more abundant than ferromagnets, can be robust, and are projected to offer superior scalability for spintronics compared to ferromagnets. Our Perspective revisits the decades of research of the spin-ordered anisotropic zero-magnetization phases including, besides superfluid $^3$He, also theoretically conceived counterparts in nematic electronic liquid-crystal phases. While all sharing the same extraordinary character of symmetry breaking, we highlight the distinctions in microscopic physics which set altermagnets apart and enable their robust and abundant material realizations. 
    more » « less