skip to main content

Title: Chemoproteomic Profiling of Protein Substrates of a Major Lysine Acetyltransferase in the Native Cellular Context
The family of lysine acetyltransferases (KATs) regulates epigenetics and signaling pathways in eukaryotic cells. So far, knowledge of different KAT members contributing to the cellular acetylome is limited, which limits our understanding of biological functions of KATs in physiology and disease. Here, we found that a clickable acyl-CoA reporter, 3-azidopropanoyl CoA (3AZ-CoA), presented remarkable cell permeability and effectively acylated proteins in cells. We rationally engineered the major KAT member, histone acetyltransferase 1 (HAT1), to generate its mutant forms that displayed excellent bio-orthogonal activity for 3AZ-CoA in substrate labeling. We were able to apply the bio-orthogonal enzyme–cofactor pair combined with SILAC proteomics to achieve HAT1 substrate targeting, enrichment, and proteomic profiling in living cells. A total of 123 protein substrates of HAT1 were disclosed, underlining the multifactorial functions of this important enzyme than hitherto known. This study demonstrates the first example of utilizing bio-orthogonal reporters as a chemoproteomic strategy for substrate mapping of individual KAT isoforms in the native biological contexts.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACS Chemical Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Protein acylation, exemplified by lysine acetylation, is a type of indispensable and widespread protein posttranslational modification in eukaryotes. Functional annotation of various lysine acetyltransferases (KATs) is critical to understanding their regulatory roles in abundant biological processes. Traditional radiometric and immunosorbent assays have found broad use in KAT study but have intrinsic limitations. Designing acyl–coenzyme A (CoA) reporter molecules bearing chemoselective chemical warhead groups as surrogates of the native cofactor acetyl-CoA for bioorthogonal labeling of KAT substrates has come into a technical innovation in recent years. This chemical biology platform equips molecular biologists with empowering tools in acyltransferase activity detection and substrate profiling. In the bioorthogonal labeling, protein substrates are first enzymatically modified with a functionalized acyl group. Subsequently, the chemical warhead on the acyl chain conjugates with either an imaging chromophore or an affinity handle or any other appropriate probes through an orthogonal chemical ligation. This bioorganic strategy reformats the chemically inert acetylation and acylation marks into a chemically maneuverable functionality and generates measurable signals without recourse to radioisotopes or antibodies. It offers ample opportunities for facile sensitive detection of KAT activity with temporal and spatial resolutions as well as allows for chemoproteomic profiling of protein acetylation pertaining to specific KATs of interest on the global scale. We reviewed here the past and current advances in bioorthogonal protein acylations and highlighted their wide-spectrum applications. We also discussed the design of other related acyl-CoA and CoA-based chemical probes and their deployment in illuminating protein acetylation and acylation biology.

    more » « less
  2. Abstract

    The side‐chain acetylation of lysine residues in histones and non‐histone proteins catalyzed by lysine acetyltransferases (KATs) represents a widespread posttranslational modification (PTM) in the eukaryotic cells. Lysine acetylation plays regulatory roles in major cellular pathways inside and outside the nucleus. In particular, KAT‐mediated histone acetylation has an effect on all DNA‐templated epigenetic processes. Aberrant expression and activation of KATs are commonly observed in human diseases, especially cancer. In recent years, the study of KAT functions in biology and disease has greatly benefited from chemical biology tools and strategies. In this Review, we present the past and current accomplishments in the design of chemical biology approaches for the interrogation of KAT activity and function. These methods and probes are classified according to their mechanisms of action and respective applications, with both strengths and limitations discussed.

    more » « less
  3. The Acyl-activating enzyme (AAE) 3 gene encodes an oxalyl-CoA synthetase that catalyzes the conversion of oxalate to oxalyl-CoA as the first step in the CoA-dependent pathway of oxalate catabolism. Although the role of this enzyme in oxalate catabolism has been established, its biological roles in plant growth and development are less understood. As a step toward gaining a better understanding of these biological roles, we report here a characterization of the Arabidopsis thaliana aae3 (Ataae3) seed mucilage phenotype. Ruthidium red (RR) staining of Ataae3 and wild type (WT) seeds suggested that the observed reduction in Ataae3 germination may be attributable, at least in part, to a decrease in seed mucilage accumulation. Quantitative RT-PCR analysis revealed that the expression of selected mucilage regulatory transcription factors, as well as of biosynthetic and extrusion genes, was significantly down-regulated in the Ataae3 seeds. Mucilage accumulation in seeds from an engineered oxalate-accumulating Arabidopsis and Atoxc mutant, blocked in the second step of the CoA-dependent pathway of oxalate catabolism, were found to be similar to WT. These findings suggest that elevated tissue oxalate concentrations and loss of the oxalate catabolism pathway downstream of AAE3 were not responsible for the reduced Ataae3 seed germination and mucilage phenotypes. Overall, our findings unveil the presence of regulatory interplay between AAE3 and transcriptional control of mucilage gene expression.

    more » « less
  4. Colocalization of enzymes is a proven approach to increase pathway flux and the synthesis of nonnative products. Here, we develop a method for enzyme colocalization using the yeast peroxisomal membrane as an anchor point. Pathway enzymes were fused to the native Pex15 anchoring motif to enable display on the surface of the peroxisome facing the cytosol. The peroxisome is the sole location of β-oxidation in Saccharomyces cerevisiae, and acetyl-CoA is a by-product that is exported in the form of acetyl-carnitine. To access this untapped acetyl-CoA pool, we surface-anchored the native peroxisomal/mitochondrial enzyme Cat2 to convert acetyl-carnitine to acetyl-CoA directly upon export across the peroxisomal membrane; this increased acetyl-CoA levels 3.7-fold. Subsequent surface attachment of three pathway enzymes – Cat2, a high stability Acc1 (for conversion of acetyl-CoA to malonyl-CoA), and the type III PKS 2-pyrone synthase – demonstrated the success of peroxisomal surface display for both enzyme colocalization and access to acetyl-CoA from exported acetyl-carnitine. Synthesis of the polyketide triacetic acid lactone increased by 21% over cytosolic expression at low gene copy number, and an additional 11-fold (to 766 mg/L) after further optimization. Finally, we explored increasing peroxisomal membrane area through overexpression of the peroxisomal biogenesis protein Pex11. Our findings establish peroxisomal surface display as an efficient strategy for enzyme colocalization and for accessing the peroxisomal acetyl-CoA pool to increase synthesis of acetyl-CoA-based products. 
    more » « less
  5. Abstract

    Beta-hydroxy non-standard amino acids (β-OH-nsAAs) have utility as small molecule drugs, precursors for beta-lactone antibiotics, and building blocks for polypeptides. While the L-threonine transaldolase (TTA), ObiH, is a promising enzyme for β-OH-nsAA biosynthesis, little is known about other natural TTA sequences. We ascertained the specificity of the TTA enzyme class more comprehensively by characterizing 12 candidate TTA gene products across a wide range (20-80%) of sequence identities. We found that addition of a solubility tag substantially enhanced the soluble protein expression level within this difficult-to-express enzyme family. Using an optimized coupled enzyme assay, we identified six TTAs, including one with less than 30% sequence identity to ObiH that exhibits broader substrate scope, two-fold higher L-Threonine (L-Thr) affinity, and five-fold faster initial reaction rates under conditions tested. We harnessed these TTAs for first-time bioproduction of β-OH-nsAAs with handles for bio-orthogonal conjugation from supplemented precursors during aerobic fermentation of engineeredEscherichia coli, where we observed that higher affinity of the TTA for L-Thr increased titer. Overall, our work reveals an unexpectedly high level of sequence diversity and broad substrate specificity in an enzyme family whose members play key roles in the biosynthesis of therapeutic natural products that could benefit from chemical diversification.

    more » « less