skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automatic Synthesis of Diverse Weak Supervision Sources for Behavior Analysis
Obtaining annotations for large training sets is expen- sive, especially in settings where domain knowledge is re- quired, such as behavior analysis. Weak supervision has been studied to reduce annotation costs by using weak la- bels from task-specific labeling functions (LFs) to augment ground truth labels. However, domain experts still need to hand-craft different LFs for different tasks, limiting scal- ability. To reduce expert effort, we present AutoSWAP: a framework for automatically synthesizing data-efficient task-level LFs. The key to our approach is to efficiently represent expert knowledge in a reusable domain-specific language and more general domain-level LFs, with which we use state-of-the-art program synthesis techniques and a small labeled dataset to generate task-level LFs. Addition- ally, we propose a novel structural diversity cost that allows for efficient synthesis of diverse sets of LFs, further improv- ing AutoSWAP’s performance. We evaluate AutoSWAP in three behavior analysis domains and demonstrate that Au- toSWAP outperforms existing approaches using only a frac- tion of the data. Our results suggest that AutoSWAP is an effective way to automatically generate LFs that can signif- icantly reduce expert effort for behavior analysis.  more » « less
Award ID(s):
1918865
PAR ID:
10325779
Author(s) / Creator(s):
;
Date Published:
Journal Name:
CVPR 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Specialized domain knowledge is often necessary to ac- curately annotate training sets for in-depth analysis, but can be burdensome and time-consuming to acquire from do- main experts. This issue arises prominently in automated behavior analysis, in which agent movements or actions of interest are detected from video tracking data. To reduce annotation effort, we present TREBA: a method to learn annotation-sample efficient trajectory embedding for be- havior analysis, based on multi-task self-supervised learn- ing. The tasks in our method can be efficiently engineered by domain experts through a process we call “task program- ming”, which uses programs to explicitly encode structured knowledge from domain experts. Total domain expert effort can be reduced by exchanging data annotation time for the construction of a small number of programmed tasks. We evaluate this trade-off using data from behavioral neuro- science, in which specialized domain knowledge is used to identify behaviors. We present experimental results in three datasets across two domains: mice and fruit flies. Using embeddings from TREBA, we reduce annotation burden by up to a factor of 10 without compromising accuracy com- pared to state-of-the-art features. Our results thus suggest that task programming and self-supervision can be an ef- fective way to reduce annotation effort for domain experts. 
    more » « less
  2. Aligning Large Language Models to integrate and reflect human values, especially for tasks that demand intricate human oversight, is arduous since it is resource-intensive and time-consuming to depend on human expertise for context-specific guidance. Prior work has utilized predefined sets of rules or principles to steer the behavior of models (Bai et al., 2022; Sun et al., 2023). However, these principles tend to be generic, making it challenging to adapt them to each individual input query or context. In this work, we present Situated-PRInciples (SPRI), a framework requiring minimal or no human effort that is designed to automatically generate guiding principles in real-time for each input query and utilize them to align each response. We evaluate SPRI on three tasks, and show that 1) SPRI can derive principles in a complex domain-specific task that leads to on-par performance as expert-crafted ones; 2) SPRI-generated principles lead to instance-specific rubrics that outperform prior LLM-as-a-judge frameworks; 3) using SPRI to generate synthetic SFT data leads to substantial improvement on truthfulness. 
    more » « less
  3. Weak supervision (WS) is a popular approach for label-efficient learning, leveraging diverse sources of noisy but inexpensive weak labels to automatically annotate training data. Despite its wide usage, WS and its practical value are challenging to benchmark due to the many knobs in its setup, including: data sources, labeling functions (LFs), aggregation techniques (called label models), and end model pipelines. Existing evaluation suites tend to be limited, focusing on particular components or specialized use cases. Moreover, they often involve simplistic benchmark tasks or de-facto LF sets that are suboptimally written, producing insights that may not generalize to real-world settings. We address these limitations by introducing a new benchmark, BOXWRENCH, designed to more accurately reflect real-world usages of WS. This benchmark features tasks with (1) higher class cardinality and imbalance, (2) notable domain expertise requirements, and (3) opportunities to re-use LFs across parallel multilingual corpora. For all tasks, LFs are written using a careful procedure aimed at mimicking real-world settings. In contrast to existing WS benchmarks, we show that supervised learning requires substantial amounts (1000+) of labeled examples to match WS in many settings. 
    more » « less
  4. Agarwal, Alekh; Belgrave, Danielle; Cho, Kyunghyun; Oh, Alice (Ed.)
    We propose a new approach to automated theorem proving where an AlphaZero-style agent is self-training to refine a generic high-level expert strategy expressed as a nondeterministic program. An analogous teacher agent is self-training to generate tasks of suitable relevance and difficulty for the learner. This allows leveraging minimal amounts of domain knowledge to tackle problems for which training data is unavailable or hard to synthesize. As a specific illustration, we consider loop invariant synthesis for imperative programs and use neural networks to refine both the teacher and solver strategies. 
    more » « less
  5. Effective planning in the real world requires not only world knowledge, but the ability to leverage that knowledge to build the right representation of the task at hand. Decades of hierarchical planning techniques have used domain-specific temporal action abstractions to support efficient and accurate planning, almost always relying on human priors and domain knowledge to decompose hard tasks into smaller subproblems appropriate for a goal or set of goals. This paper describes Ada (Action Domain Acquisition), a framework for automatically constructing task-specific planning representations using task-general background knowledge from language models (LMs). Starting with a general-purpose hierarchical planner and a low-level goal-conditioned policy, Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks. On two language-guided interactive planning benchmarks (Mini Minecraft and ALFRED Household Tasks), Ada strongly outperforms other approaches that use LMs for sequential decision- making, offering more accurate plans and better generalization to complex tasks. 
    more » « less