skip to main content


Title: Correlational networking guides the discovery of unclustered lanthipeptide protease-encoding genes
Abstract

Bacterial natural product biosynthetic genes, canonically clustered, have been increasingly found to rely on hidden enzymes encoded elsewhere in the genome for completion of biosynthesis. The study and application of lanthipeptides are frequently hindered by unclustered protease genes required for final maturation. Here, we establish a global correlation network bridging the gap between lanthipeptide precursors and hidden proteases. Applying our analysis to 161,954 bacterial genomes, we establish 5209 correlations between precursors and hidden proteases, with 91 prioritized. We use network predictions and co-expression analysis to reveal a previously missing protease for the maturation of class I lanthipeptide paenilan. We further discover widely distributed bacterial M16B metallopeptidases of previously unclear biological function as a new family of lanthipeptide proteases. We show the involvement of a pair of bifunctional M16B proteases in the production of previously unreported class III lanthipeptides with high substrate specificity. Together, these results demonstrate the strength of our correlational networking approach to the discovery of hidden lanthipeptide proteases and potentially other missing enzymes for natural products biosynthesis.

 
more » « less
Award ID(s):
1655740
NSF-PAR ID:
10364430
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Freitag, Nancy E. (Ed.)
    ABSTRACT Mutation of purR was previously shown to enhance the virulence of Staphylococcus aureus in a murine sepsis model, and this cannot be fully explained by increased expression of genes within the purine biosynthesis pathway. Rather, the increased production of specific S. aureus virulence factors, including alpha toxin and the fibronectin-binding proteins, was shown to play an important role. Mutation of purR was also shown previously to result in increased abundance of SarA. Here, we demonstrate by transposon sequencing that mutation of purR in the USA300 strain LAC increases fitness in a biofilm while mutation of sarA has the opposite effect. Therefore, we assessed the impact of sarA on reported purR -associated phenotypes by characterizing isogenic purR , sarA , and sarA/purR mutants. The results confirmed that mutation of purR results in increased abundance of alpha toxin, protein A, the fibronectin-binding proteins, and SarA, decreased production of extracellular proteases, an increased capacity to form a biofilm, and increased virulence in an osteomyelitis model. Mutation of sarA had the opposite effects on all of these phenotypes and, other than bacterial burdens in the bone, all of the phenotypes of sarA / purR mutants were comparable to those of sarA mutants. Limiting the production of extracellular proteases reversed all of the phenotypes of sarA mutants and most of those of sarA/purR mutants. We conclude that a critical component defining the virulence of a purR mutant is the enhanced production of SarA, which limits protease production to an extent that promotes the accumulation of critical S. aureus virulence factors. 
    more » « less
  2. ABSTRACT Members of Chlamydia are obligate intracellular bacteria that differentiate between two distinct functional and morphological forms during their developmental cycle, elementary bodies (EBs) and reticulate bodies (RBs). EBs are nondividing small electron-dense forms that infect host cells. RBs are larger noninfectious replicative forms that develop within a membrane-bound vesicle, termed an inclusion. Given the unique properties of each developmental form of this bacterium, we hypothesized that the Clp protease system plays an integral role in proteomic turnover by degrading specific proteins from one developmental form or the other. Chlamydia spp. have five uncharacterized clp genes, clpX , clpC , two clpP paralogs, and clpB . In other bacteria, ClpC and ClpX are ATPases that unfold and feed proteins into the ClpP protease to be degraded, and ClpB is a deaggregase. Here, we focused on characterizing the ClpP paralogs. Transcriptional analyses and immunoblotting determined that these genes are expressed midcycle. Bioinformatic analyses of these proteins identified key residues important for activity. Overexpression of inactive clpP mutants in Chlamydia spp. suggested independent function of each ClpP paralog. To further probe these differences, we determined interactions between the ClpP proteins using bacterial two-hybrid assays and native gel analysis of recombinant proteins. Homotypic interactions of the ClpP proteins, but not heterotypic interactions between the ClpP paralogs, were detected. Interestingly, protease activity of ClpP2, but not ClpP1, was detected in vitro . This activity was stimulated by antibiotics known to activate ClpP, which also blocked chlamydial growth. Our data suggest the chlamydial ClpP paralogs likely serve distinct and critical roles in this important pathogen. IMPORTANCE Chlamydia trachomatis is the leading cause of preventable infectious blindness and of bacterial sexually transmitted infections worldwide. Chlamydiae are developmentally regulated obligate intracellular pathogens that alternate between two functional and morphologic forms, with distinct repertoires of proteins. We hypothesize that protein degradation is a critical aspect to the developmental cycle. A key system involved in protein turnover in bacteria is the Clp protease system. Here, we characterized the two chlamydial ClpP paralogs by examining their expression in Chlamydia spp., their ability to oligomerize, and their proteolytic activity. This work will help understand the evolutionarily diverse Clp proteases in the context of intracellular organisms, which may aid in the study of other clinically relevant intracellular bacteria. 
    more » « less
  3. Abstract  

    Monoterpene indole alkaloids (MIAs) are a class of natural products comprised of thousands of structurally unique bioactive compounds with significant therapeutic values. Due to difficulties associated with isolation from native plant species and organic synthesis of these structurally complex molecules, microbial production of MIAs using engineered hosts are highly desired. In this work, we report the engineering of fully integrated Saccharomyces cerevisiae strains that allow de novo access to strictosidine, the universal precursor to thousands of MIAs at 30–40 mg/L. The optimization efforts were based on a previously reported yeast strain that is engineered to produce high titers of the monoterpene precursor geraniol through compartmentalization of mevalonate pathway in the mitochondria. Our approaches here included the use of CRISPR-dCas9 interference to identify mitochondria diphosphate transporters that negatively impact the titer of the monoterpene, followed by genetic inactivation; the overexpression of transcriptional regulators that increase cellular respiration and mitochondria biogenesis. Strain construction included the strategic integration of genes encoding both MIA biosynthetic and accessory enzymes into the genome under a variety of constitutive and inducible promoters. Following successful de novo production of strictosidine, complex alkaloids belonging to heteroyohimbine and corynantheine families were reconstituted in the host with introduction of additional downstream enzymes. We demonstrate that the serpentine/alstonine pair can be produced at ∼5 mg/L titer, while corynantheidine, the precursor to mitragynine can be produced at ∼1 mg/L titer. Feeding of halogenated tryptamine led to the biosynthesis of analogs of alkaloids in both families. Collectively, our yeast strain represents an excellent starting point to further engineer biosynthetic bottlenecks in this pathway and to access additional MIAs and analogs through microbial fermentation.

    One Sentence Summary

    An Saccharomyces cerevisiae-based microbial platform was developed for the biosynthesis of monoterpene indole alkaloids, including the universal precursor strictosidine and further modified heteroyohimbine and corynantheidine alkaloids.

     
    more » « less
  4. Brun, Yves V. (Ed.)
    ABSTRACT The alphaproteobacterium Sinorhizobium meliloti secretes two acidic exopolysaccharides (EPSs), succinoglycan (EPSI) and galactoglucan (EPSII), which differentially enable it to adapt to a changing environment. Succinoglycan is essential for invasion of plant hosts and, thus, for the formation of nitrogen-fixing root nodules. Galactoglucan is critical for population-based behaviors such as swarming and biofilm formation and can facilitate invasion in the absence of succinoglycan on some host plants. The biosynthesis of galactoglucan is not as completely understood as that of succinoglycan. We devised a pipeline to identify putative pyruvyltransferase and acetyltransferase genes, construct genomic deletions in strains engineered to produce either succinoglycan or galactoglucan, and analyze EPS from mutant bacterial strains. EPS samples were examined by 13 C cross-polarization magic-angle spinning (CPMAS) solid-state nuclear magnetic resonance (NMR). CPMAS NMR is uniquely suited to defining chemical composition in complex samples and enables the detection and quantification of distinct EPS functional groups. Galactoglucan was isolated from mutant strains with deletions in five candidate acyl/acetyltransferase genes ( exoZ , exoH , SMb20810 , SMb21188 , and SMa1016 ) and a putative pyruvyltransferase ( wgaE or SMb21322 ). Most samples were similar in composition to wild-type EPSII by CPMAS NMR analysis. However, galactoglucan produced from a strain lacking wgaE exhibited a significant reduction in pyruvylation. Pyruvylation was restored through the ectopic expression of plasmid-borne wgaE . Our work has thus identified WgaE as a galactoglucan pyruvyltransferase. This exemplifies how the systematic combination of genetic analyses and solid-state NMR detection is a rapid means to identify genes responsible for modification of rhizobial exopolysaccharides. IMPORTANCE Nitrogen-fixing bacteria are crucial for geochemical cycles and global nitrogen nutrition. Symbioses between legumes and rhizobial bacteria establish root nodules, where bacteria convert dinitrogen to ammonia for plant utilization. Secreted exopolysaccharides (EPSs) produced by Sinorhizobium meliloti (succinoglycan and galactoglucan) play important roles in soil and plant environments. The biosynthesis of galactoglucan is not as well characterized as that of succinoglycan. We employed solid-state nuclear magnetic resonance (NMR) to examine intact EPS from wild-type and mutant S. meliloti strains. NMR analysis of EPS isolated from a wgaE gene mutant revealed a novel pyruvyltransferase that modifies galactoglucan. Few EPS pyruvyltransferases have been characterized. Our work provides insight into the biosynthesis of an important S. meliloti EPS and expands the knowledge of enzymes that modify polysaccharides. 
    more » « less
  5. Abstract

    Two families of DNA glycosylases (YtkR2/AlkD, AlkZ/YcaQ) have been found to remove bulky and crosslinking DNA adducts produced by bacterial natural products. Whether DNA glycosylases eliminate other types of damage formed by structurally diverse antibiotics is unknown. Here, we identify four DNA glycosylases—TxnU2, TxnU4, LldU1 and LldU5—important for biosynthesis of the aromatic polyketide antibiotics trioxacarcin A (TXNA) and LL-D49194 (LLD), and show that the enzymes provide self-resistance to the producing strains by excising the intercalated guanine adducts of TXNA and LLD. These enzymes are highly specific for TXNA/LLD-DNA lesions and have no activity toward other, less stable alkylguanines as previously described for YtkR2/AlkD and AlkZ/YcaQ. Similarly, TXNA-DNA adducts are not excised by other alkylpurine DNA glycosylases. TxnU4 and LldU1 possess unique active site motifs that provide an explanation for their tight substrate specificity. Moreover, we show that abasic (AP) sites generated from TxnU4 excision of intercalated TXNA-DNA adducts are incised by AP endonuclease less efficiently than those formed by 7mG excision. This work characterizes a distinct class of DNA glycosylase acting on intercalated DNA adducts and furthers our understanding of specific DNA repair self-resistance activities within antibiotic producers of structurally diverse, highly functionalized DNA damaging agents.

     
    more » « less