skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Representative community divisions of networks
Abstract Methods for detecting community structure in networks typically aim to identify a single best partition of network nodes into communities, often by optimizing some objective function, but in real-world applications there may be many competitive partitions with objective scores close to the global optimum and one can obtain a more informative picture of the community structure by examining a representative set of such high-scoring partitions than by looking at just the single optimum. However, such a set can be difficult to interpret since its size can easily run to hundreds or thousands of partitions. In this paper we present a method for analyzing large partition sets by dividing them into groups of similar partitions and then identifying an archetypal partition as a representative of each group. The resulting set of archetypal partitions provides a succinct, interpretable summary of the form and variety of community structure in any network. We demonstrate the method on a range of example networks.  more » « less
Award ID(s):
2005899
PAR ID:
10325876
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Partitioning networks into communities of densely connected nodes is an important tool used widely across different applications, with numerous methods and software packages available for community detection. Modularity-based methods require parameters to be selected (or assume defaults) to control the resolution and, in multilayer networks, interlayer coupling. Meanwhile, most useful algorithms are heuristics yielding different near-optimal results upon repeated runs (even at the same parameters). To address these difficulties, we combine recent developments into a simple-to-use framework for pruning a set of partitions to a subset that are self-consistent by an equivalence with the objective function for inference of a degree-corrected planted partition stochastic block model (SBM). Importantly, this combined framework reduces some of the problems associated with the stochasticity that is inherent in the use of heuristics for optimizing modularity. In our examples, the pruning typically highlights only a small number of partitions that are fixed points of the corresponding map on the set of somewhere-optimal partitions in the parameter space. We also derive resolution parameter upper bounds for fitting a constrained SBM ofKblocks and demonstrate that these bounds hold in practice, further guiding parameter space regions to consider. With publicly available code (http://github.com/ragibson/ModularityPruning), our pruning procedure provides a new baseline for using modularity-based community detection in practice. 
    more » « less
  2. Let P be a set n points in a d-dimensional space. Tverberg theorem says that, if n is at least (k − 1)(d + 1), then P can be par- titioned into k sets whose convex hulls intersect. Partitions with this property are called Tverberg partitions. A partition has tolerance t if the partition remains a Tverberg partition after removal of any set of t points from P. A tolerant Tverberg partition exists in any dimensions provided that n is sufficiently large. Let N(d,k,t) be the smallest value of n such that tolerant Tverberg partitions exist for any set of n points in R d . Only few exact values of N(d,k,t) are known. In this paper, we study the problem of finding Radon partitions (Tver- berg partitions for k = 2) for a given set of points. We develop several algorithms and found new lower bounds for N(d,2,t). 
    more » « less
  3. Abstract Line coverage is the task of servicing a given set of one‐dimensional features in an environment. It is important for the inspection of linear infrastructure such as road networks, power lines, and oil and gas pipelines. This paper addresses the single robot line coverage problem for aerial and ground robots by modeling it as an optimization problem on a graph. The problem belongs to the broad class of arc routing problems and is closely related to the rural postman problem (RPP) on asymmetric graphs. The paper presents an integer linear programming formulation with proofs of correctness. Using the minimum cost flow problem, we develop approximation algorithms with guarantees on the solution quality. These guarantees also improve the existing results for the asymmetric RPP. The main algorithm partitions the problem into three cases based on the structure of therequired graph, that is, the graph induced by the features that require servicing. We evaluate our algorithms on road networks from the 50 most populous cities in the world, consisting of up to 730 road segments. The algorithms, augmented with improvement heuristics, run within 3 s and generate solutions that are within 10% of the optimum. We experimentally demonstrate our algorithms with commercial UAVs on the UNC Charlotte campus road network. 
    more » « less
  4. Phylogenetic networks extend the phylogenetic tree structure and allow for modeling vertical and horizontal evolution in a single framework. Statistical inference of phylogenetic networks is prohibitive and currently limited to small networks. An approach that could significantly improve phylogenetic network space exploration is based on first inferring an evolutionary tree of the species under consideration, and then augmenting the tree into a network by adding a set of "horizontal" edges to better fit the data. In this paper, we study the performance of such an approach on networks generated under a birth-hybridization model and explore its feasibility as an alternative to approaches that search the phylogenetic network space directly (without relying on a fixed underlying tree). We find that the concatenation method does poorly at obtaining a "backbone" tree that could be augmented into the correct network, whereas the popular species tree inference method ASTRAL does significantly better at such a task. We then evaluated the tree-to-network augmentation phase under the minimizing deep coalescence and pseudo-likelihood criteria. We find that even though this is a much faster approach than the direct search of the network space, the accuracy is much poorer, even when the backbone tree is a good starting tree. Our results show that tree-based inference of phylogenetic networks could yield very poor results. As exploration of the network space directly in search of maximum likelihood estimates or a representative sample of the posterior is very expensive, significant improvements to the computational complexity of phylogenetic network inference are imperative if analyses of large data sets are to be performed. We show that a recently developed divide-and-conquer approach significantly outperforms tree-based inference in terms of accuracy, albeit still at a higher computational cost. 
    more » « less
  5. We consider the problem of enumerating optimal solutions for two hypergraph k-partitioning problems, namely, Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. The input in hypergraph k-partitioning problems is a hypergraph [Formula: see text] with positive hyperedge costs along with a fixed positive integer k. The goal is to find a partition of V into k nonempty parts [Formula: see text]—known as a k-partition—so as to minimize an objective of interest. (1) If the objective of interest is the maximum cut value of the parts, then the problem is known as Minmax-Hypergraph-k-Partition. A subset of hyperedges is a minmax-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Minmax-Hypergraph-k-Partition. (2) If the objective of interest is the total cost of hyperedges crossing the k-partition, then the problem is known as Hypergraph-k-Cut. A subset of hyperedges is a min-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Hypergraph-k-Cut. We give the first polynomial bound on the number of minmax-k-cut-sets and a polynomial-time algorithm to enumerate all of them in hypergraphs for every fixed k. Our technique is strong enough to also enable an [Formula: see text]-time deterministic algorithm to enumerate all min-k-cut-sets in hypergraphs, thus improving on the previously known [Formula: see text]-time deterministic algorithm, in which n is the number of vertices and p is the size of the hypergraph. The correctness analysis of our enumeration approach relies on a structural result that is a strong and unifying generalization of known structural results for Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. We believe that our structural result is likely to be of independent interest in the theory of hypergraphs (and graphs). Funding: All authors were supported by NSF AF 1814613 and 1907937. 
    more » « less