skip to main content


Title: Graph Learning From Multivariate Dependent Time Series Via A Multi-Attribute Formulation
We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary multivariate Gaussian time series. In a time series graph, each component of the vector series is represented by distinct node, and associations between components are represented by edges between the corresponding nodes. We formulate the problem as one of multi-attribute graph estimation for random vectors where a vector is associated with each node of the graph. At each node, the associated random vector consists of a time series component and its delayed copies. We present an alternating direction method of multipliers (ADMM) solution to minimize a sparse-group lasso penalized negative pseudo log-likelihood objective function to estimate the precision matrix of the random vector associated with the entire multi-attribute graph. The time series CIG is then inferred from the estimated precision matrix. A theoretical analysis is provided. Numerical results illustrate the proposed approach which outperforms existing frequency-domain approaches in correctly detecting the graph edges.  more » « less
Award ID(s):
2040536
NSF-PAR ID:
10325908
Author(s) / Creator(s):
Date Published:
Journal Name:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
4508 to 4512
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary, multivariate long-range dependent (LRD) Gaussian time series. In a time series graph, each component of the vector series is represented by a distinct node, and associations between components are represented by edges between the corresponding nodes. In a recent work on graphical modeling of short-range dependent (SRD) Gaussian time series, the problem was cast as one of multi-attribute graph estimation for random vectors where a vector is associated with each node of the graph. At each node, the associated random vector consists of a time series component and its delayed copies. A theoretical analysis based on short-range dependence has been given in Tugnait (2022 ICASSP). In this paper we analyze this approach for LRD Gaussian time series and provide consistency results regarding convergence in the Frobenius norm of the inverse covariance matrix associated with the multi-attribute graph. 
    more » « less
  2. We consider the problem of inferring the conditional independence graph (CIG) of high-dimensional Gaussian vectors from multi-attribute data. Most existing methods for graph estimation are based on single-attribute models where one associates a scalar random variable with each node. In multi-attribute graphical models, each node represents a random vector. In this paper we consider a sparse-group smoothly clipped absolute deviation (SG-SCAD) penalty instead of sparse-group lasso (SGL) penalty to regularize the problem. We analyze an SG-SCAD-penalized log-likelihood based objective function to establish consistency of a local estimator of inverse covariance. A numerical example is presented to illustrate the advantage of SG-SCAD-penalty over the usual SGL-penalty. 
    more » « less
  3. We consider the problem of estimating differences in two Gaussian graphical models (GGMs) which are known to have similar structure. The GGM structure is encoded in its precision (inverse covariance) matrix. In many applications one is interested in estimating the difference in two precision matrices to characterize underlying changes in conditional dependencies of two sets of data. Existing methods for differential graph estimation are based on single-attribute models where one associates a scalar random variable with each node. In multi-attribute graphical models, each node represents a random vector. In this paper, we analyze a group lasso penalized D-trace loss function approach for differential graph learning from multi-attribute data. An alternating direction method of multipliers (ADMM) algorithm is presented to optimize the objective function. Theoretical analysis establishing consistency in support recovery and estimation in high-dimensional settings is provided. We illustrate our approach using a numerical example where the multi-attribute approach is shown to outperform a single-attribute approach. 
    more » « less
  4. We consider the problem of estimating differences in two Gaussian graphical models (GGMs) which are known to have similar structure. The GGM structure is encoded in its precision (inverse covariance) matrix. In many applications one is interested in estimating the difference in two precision matrices to characterize underlying changes in conditional dependencies of two sets of data. Existing methods for differential graph estimation are based on single-attribute (SA) models where one associates a scalar random variable with each node. In multi-attribute (MA) graphical models, each node represents a random vector. In this paper, we analyze a group lasso penalized D-trace loss function approach for differential graph learning from multi-attribute data. An alternating direction method of multipliers (ADMM) algorithm is presented to optimize the objective function. Theoretical analysis establishing consistency in support recovery and estimation in high-dimensional settings is provided. Numerical results based on synthetic as well as real data are presented. 
    more » « less
  5. Singh, Mona (Ed.)
    Microbial associations are characterized by both direct and indirect interactions between the constituent taxa in a microbial community, and play an important role in determining the structure, organization, and function of the community. Microbial associations can be represented using a weighted graph (microbial network) whose nodes represent taxa and edges represent pairwise associations. A microbial network is typically inferred from a sample-taxa matrix that is obtained by sequencing multiple biological samples and identifying the taxa counts in each sample. However, it is known that microbial associations are impacted by environmental and/or host factors. Thus, a sample-taxa matrix generated in a microbiome study involving a wide range of values for the environmental and/or clinical metadata variables may in fact be associated with more than one microbial network. Here we consider the problem of inferring multiple microbial networks from a given sample-taxa count matrix. Each sample is a count vector assumed to be generated by a mixture model consisting of component distributions that are Multivariate Poisson Log-Normal. We present a variational Expectation Maximization algorithm for the model selection problem to infer the correct number of components of this mixture model. Our approach involves reframing the mixture model as a latent variable model, treating only the mixing coefficients as parameters, and subsequently approximating the marginal likelihood using an evidence lower bound framework. Our algorithm is evaluated on a large simulated dataset generated using a collection of different graph structures (band, hub, cluster, random, and scale-free). 
    more » « less