skip to main content


Title: Acetylene hydrogenation catalyzed by bare and Ni doped CeO 2 (110): the role of frustrated Lewis pairs
Ceria (CeO 2 ) has recently been found to catalyze the selective hydrogenation of alkynes, which has stimulated much discussion on the catalytic mechanism on various facets of reducible oxides. In this work, H 2 dissociation and acetylene hydrogenation on bare and Ni doped CeO 2 (110) surfaces are investigated using density functional theory (DFT). Similar to that on the CeO 2 (111) surface, our results suggest that catalysis is facilitated by frustrated Lewis pairs (FLPs) formed by oxygen vacancies (O v s) on the oxide surfaces. On bare CeO 2 (110) with a single O v (CeO 2 (110)–O v ), two surface Ce cations with one non-adjacent O anion are shown to form (Ce 3+ –Ce 4+ )/O quasi-FLPs, while for the Ni doped CeO 2 (110) surface with one (Ni–CeO 2 (110)–O v ) or two (Ni–CeO 2 (110)–2O v ) O v s, one Ce and a non-adjacent O counterions are found to form a mono-Ce/O FLP. DFT calculations indicate that Ce/O FLPs facilitate the H 2 dissociation via a heterolytic mechanism, while the resulting surface O–H and Ce–H species catalyze the subsequent acetylene hydrogenation. With CeO 2 (110)–O v and Ni–CeO 2 (110)–2O v , our DFT calculations suggest that the first hydrogenation step is the rate-determining step with a barrier of 0.43 and 0.40 eV, respectively. For Ni–CeO 2 (110)–O v , the reaction is shown to be controlled by the H 2 dissociation with a barrier of 0.41 eV. These barriers are significantly lower than that (about 0.7 eV) on CeO 2 (111), explaining the experimentally observed higher catalytic efficiency of the (110) facet of ceria. The change of the rate-determining step is attributed to the different electronic properties of Ce in the Ce/O FLPs – the Ce f states closer to the Fermi level not only facilitate the heterolytic dissociation of H 2 but also lead to a higher barrier of acetylene hydrogenation.  more » « less
Award ID(s):
1951328
NSF-PAR ID:
10326067
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
18
ISSN:
1463-9076
Page Range / eLocation ID:
11295 to 11304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deoxydehydration (DODH) is an emerging biomass deoxygenation process whereby vicinal OH groups are removed. Based on DFT calculations and microkinetic modeling, we seek to understand the mechanism of the Re-catalyzed deoxydehydration supported on CeO 2 (111). In addition, we aim at understanding the promotional effect of Pd in a heterogeneous ReO x –Pd/CeO 2 DODH catalyst system. We disentangle the contribution of the oxide support, the oxide-supported single ReO x species, and a co-adsorbed Pd promoter that has no direct interaction with the Re species. In the absence of a nearby Pd cluster, a Re site is able to reduce subsurface Ce-ions of a hydroxylated CeO 2 (111) surface, leading to a catalytically active Re +6 species. The effect of Pd is twofold: (i) Pd catalyzes the hydrogen dissociation and spillover onto CeO 2 , which is an indispensable process for the regeneration of the Re catalyst, and (ii) Pd adsorbed in close proximity to Re on CeO 2 (111) facilitates the oxidation of Re to a +7 oxidation state, which leads to an even more active Re species than the Re +6 site present in the absence of Pd. The latter promotional effect of Pd (and change in oxidation state of Re) disappears with increasing Pd–Re distance and in the presence of oxygen defects on the ceria support. Under these conditions, the ReO x –Pd/CeO 2 catalyst system exhibits appreciable activity consistent with recent experiments. The established mechanism and role of various species in the catalyst system help to better understand the deoxydehydration catalysis. Also, the importance of the Re oxidation state and the identified oxidation state modification mechanisms suggest a new pathway for tuning the properties of metal-oxide supported catalysts. 
    more » « less
  2. Abstract In this work, we employ density functional theory simulations to investigate possible spin polarization of CeO 2 -(111) surface and its impact on the interactions between a ceria support and Pt nanoparticles. With a Gaussian type orbital basis, our simulations suggest that the CeO 2 -(111) surface exhibits a robust surface spin polarization due to the internal charge transfer between atomic Ce and O layers. In turn, it can lower the surface oxygen vacancy formation energy and enhance the oxide reducibility. We show that the inclusion of spin polarization can significantly reduce the major activation barrier in the proposed reaction pathway of CO oxidation on ceria-supported Pt nanoparticles. For metal-support interactions, surface spin polarization enhances the bonding between Pt nanoparticles and ceria surface oxygen, while CO adsorption on Pt nanoparticles weakens the interfacial interaction regardless of spin polarization. However, the stable surface spin polarization can only be found in the simulations based on the Gaussian type orbital basis. Given the potential importance in the design of future high-performance catalysts, our present study suggests a pressing need to examine the surface ferromagnetism of transition metal oxides in both experiment and theory. 
    more » « less
  3. This paper addresses the use of Ce 0.8 Gd 0.2 O 2−δ (GDC) infiltration into the Ni–(Y 2 O 3 ) 0.08 (ZrO 2 ) 0.92 (YSZ) fuel electrode of solid oxide cells (SOCs) for improving their electrochemical performance in fuel cell and electrolysis operation. Although doped ceria infiltration into Ni–YSZ has recently been shown to improve the electrode performance and stability, the mechanisms defining how GDC impacts electrochemical characteristics are not fully delineated. Furthermore, the electrochemical characteristics have not yet been determined over the full range of conditions normally encountered in fuel cell and electrolysis operation. Here we present a study of both symmetric and full cells aimed at understanding the electrochemical mechanisms of GDC-modified Ni–YSZ over a wide range of fuel compositions and temperatures. Single-step GDC infiltration at an appropriate loading substantially reduced the polarization resistance of Ni–YSZ electrodes in electrolyte-supported cells, as measured using electrochemical impedance spectroscopy (EIS) at various temperatures (600–800 °C) in a range of H 2 O–H 2 mixtures (3–90 vol% H 2 O). Fuel-electrode-supported cells had significant concentration polarization due to the thick Ni–YSZ supports. A distribution of relaxation times approach is used to develop a physically-based electrochemical model; the results show that GDC reduces the reaction resistance associated with three-phase boundaries, but also appears to improve oxygen transport in the electrode. Increasing the H 2 O fraction in the H 2 –H 2 O fuel mixture reduced both the three-phase boundary resistance and the gas diffusion resistance for Ni–YSZ; with GDC infiltration, the electrode resistance showed less variation with fuel composition. GDC infiltration improved the performance of fuel-electrode-supported full cells, which yielded a maximum power density of 2.28 W cm −2 in fuel cell mode and an electrolysis current density at 1.3 V of 2.22 A cm −2 , both at 800 °C. 
    more » « less
  4. Accurate characterization of chemical strain is required to study a broad range of chemical–mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO 2−δ ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO 2−δ . The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce 3+ and two become Ce 4+ ) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce 3+ –O bonds elongate, one of the Ce 3+ –O bond shorten, and all seven of the Ce 4+ –O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO 2−δ . Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry. 
    more » « less
  5. Atomic dispersion of metal catalysts on a substrate accounts for the increased atomic efficiency of single-atom catalysts (SACs) in various catalytic schemes compared to the nanoparticle counterparts. However, lacking neighboring metal sites has been shown to deteriorate the catalytic performance of SACs in a few industrially important reactions, such as dehalogenation, CO oxidation, and hydrogenation. Metal ensemble catalysts (M n ), an extended concept to SACs, have emerged as a promising alternative to overcome such limitation. Inspired by the fact that the performance of fully isolated SACs can be enhanced by tailoring their coordination environment (CE), we here evaluate whether the CE of M n can also be manipulated in order to enhance their catalytic activity. We synthesized a set of Pd ensembles (Pd n ) on doped graphene supports (Pd n /X-graphene where X = O, S, B, and N). We found that introducing S and N onto oxidized graphene modifies the first shell of Pd n converting Pd–O to Pd–S and Pd–N, respectively. We further found that the B dopant significantly affected the electronic structure of Pd n by serving as an electron donor in the second shell. We examined the performance of Pd n /X-graphene toward selective reductive catalysis, such as bromate reduction, brominated organic hydrogenation, and aqueous-phase CO 2 reduction. We observed that Pd n /N-graphene exhibited superior performance by lowering the activation energy of the rate-limiting step, i.e., H 2 dissociation into atomic hydrogen. The results collectively suggest controlling the CE of SACs in an ensemble configuration is a viable strategy to optimize and enhance their catalytic performance. 
    more » « less