Abstract In July 2016, East Bank of Flower Garden Banks (FGB) National Marine Sanctuary experienced a localized mortality event (LME) of multiple invertebrate species that ultimately led to reductions in coral cover. Abiotic data taken directly after the event suggested that acute deoxygenation contributed to the mortality. Despite the large impact of this event on the coral community, there was no direct evidence that this LME was driven by acute deoxygenation, and thus we explored whether gene expression responses of corals to the LME would indicate what abiotic factors may have contributed to the LME. Gene expression of affected and unaffected corals sampled during the mortality event revealed evidence of the physiological consequences of the LME on coral hosts and their algal symbionts from two congeneric species (Orbicella franksiandOrbicella faveolata). Affected colonies of both species differentially regulated genes involved in mitochondrial regulation and oxidative stress. To further test the hypothesis that deoxygenation led to the LME, we measured coral host and algal symbiont gene expression in response to ex situ experimental deoxygenation (control = 6.9 ± 0.08 mg L−1, anoxic = 0.083 ± 0.017 mg L−1) in healthyO. faveolatacolonies from the FGB. However, this deoxygenation experiment revealed divergent gene expression patterns compared to the corals sampled during the LME and was more similar to a generalized coral environmental stress response. It is therefore likely that while the LME was connected to low oxygen, it was a series of interconnected stressors that elicited the unique gene expression responses observed here. These in situ and ex situ data highlight how field responses to stressors are unique from those in controlled laboratory conditions, and that the complexities of deoxygenation events in the field likely arise from interactions between multiple environmental factors simultaneously.
more »
« less
Microbial Community Dynamics Provide Evidence for Hypoxia during a Coral Reef Mortality Event
ABSTRACT In July 2016, a severe coral reef invertebrate mortality event occurred approximately 200 km southeast of Galveston, Texas, at the East Flower Garden Bank, wherein ∼82% of corals in a 0.06-km 2 area died. Based on surveys of dead corals and other invertebrates shortly after this mortality event, responders hypothesized that localized hypoxia was the most likely direct cause. However, no dissolved oxygen data were available to test this hypothesis, because oxygen is not continuously monitored within the Flower Garden Banks sanctuary. Here, we quantify microbial plankton community diversity based on four cruises over 2 years at the Flower Garden Banks, including a cruise just 5 to 8 days after the mortality event was first observed. In contrast with observations collected during nonmortality conditions, microbial plankton communities in the thermocline were differentially enriched with taxa known to be active and abundant in oxygen minimum zones or that have known adaptations to oxygen limitation shortly after the mortality event (e.g., SAR324, Thioglobaceae , Nitrosopelagicus , and Thermoplasmata MGII). Unexpectedly, these enrichments were not localized to the East Bank but were instead prevalent across the entire study area, suggesting there was a widespread depletion of dissolved oxygen concentrations in the thermocline around the time of the mortality event. Hydrographic analysis revealed the southern East Bank coral reef (where the localized mortality event occurred) was uniquely within the thermocline at this time. Our results demonstrate how temporal monitoring of microbial communities can be a useful tool to address questions related to past environmental events. IMPORTANCE In the northwestern Gulf of Mexico in July 2016, ∼82% of corals in a small area of the East Flower Garden Bank coral reef suddenly died without warning. Oxygen depletion is believed to have been the cause. However, there was considerable uncertainty, as no oxygen data were available from the time of the event. Microbes are sensitive to changes in oxygen and can be used as bioindicators of oxygen loss. In this study, we analyze microbial communities in water samples collected over several years at the Flower Garden Banks, including shortly after the mortality event. Our findings indicate that compared to normal conditions, oxygen depletion was widespread in the deep-water layer during the mortality event. Hydrographic analysis of water masses further revealed some of this low-oxygen water likely upwelled onto the coral reef.
more »
« less
- PAR ID:
- 10326124
- Editor(s):
- Villanueva, Laura
- Date Published:
- Journal Name:
- Applied and Environmental Microbiology
- Volume:
- 88
- Issue:
- 9
- ISSN:
- 0099-2240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
About 190 km south of the Texas–Louisiana border, the East and West Flower Garden Banks (FGB) have maintained > 50% coral cover with infrequent and minor incidents of disease or bleaching since monitoring began in the 1970s. However, a mortality event, affecting 5.6 ha (2.6% of the area) of the East FGB, occurred in late July 2016 and coincided with storm-generated freshwater runoff extending offshore and over the reef system. To capture the immediate effects of storm-driven freshwater runoff on coral and symbiont physiology, we leveraged the heavy rainfall associated with Hurricane Harvey in late August 2017 by sampling FGB corals at two time points: September 2017, when surface water salinity was reduced (∼34 ppt); and 1 month later when salinity had returned to typical levels (∼36 ppt in October 2017). Tissue samples (N = 47) collected midday were immediately preserved for gene expression profiling from two congeneric coral species (Orbicella faveolata and Orbicella franksi) from the East and West FGB to determine the physiological consequences of storm-derived runoff. In the coral, differences between host species and sampling time points accounted for the majority of differentially expressed genes. Gene ontology enrichment for genes differentially expressed immediately after Hurricane Harvey indicated increases in cellular oxidative stress responses. Although tissue loss was not observed on FGB reefs following Hurricane Harvey, our results suggest that poor water quality following this storm caused FGB corals to experience sub-lethal stress. We also found dramatic expression differences across sampling time points in the coral’s algal symbiont, Breviolum minutum. Some of these differentially expressed genes may be involved in the symbionts’ response to changing environments, including a group of differentially expressed post-transcriptional RNA modification genes. In this study, we cannot disentangle the effects of reduced salinity from the collection time point, so these expression patterns could also be related to seasonality. These findings highlight the urgent need for continued monitoring of these reef systems to establish a baseline for gene expression of healthy corals in the FGB system across seasons, as well as the need for integrated solutions to manage stormwater runoff in the Gulf of Mexico.more » « less
-
East and West Flower Garden Bank (FGB) are part of Flower Garden Banks National Marine Sanctuary (FGBNMS) in the northwest Gulf of Mexico. This geographically-isolated reef system contains extensive coral communities with the highest coral cover (>50%) in the continental United States due, in part, to their remoteness and depth, and have historically exhibited low incidence of coral disease and bleaching despite ocean warming. Yet in late August 2022, disease-like lesions on seven coral species were reported during routine monitoring surveys on East and West FGB (2.1–2.6% prevalence). A series of rapid response cruises were conducted in September and October 2022 focused on 1) characterizing signs and epidemiological aspects of the disease across FGB and within long-term monitoring sites, 2) treating affected coral colonies with Base 2B plus amoxicillin, and 3) collecting baseline images through photostations and photomosaics. Marginal and/or multi-focal lesions and tissue loss were observed, often associated with substantial fish and invertebrate predation, affecting the dominant coral species Pseudodiploria strigosa (7–8% lesion prevalence), Colpophyllia natans (11–18%), and Orbicella spp. (1%). Characterizing this disease event during its early epidemic phase at East and West FGB provides a critical opportunity to observe how coral disease functions in a relatively healthy coral ecosystem versus on reefs chronically affected by various stressors (e.g., Caribbean reefs adjacent to urban centers). Insights into the etiology, spread, and impacts of the disease can ultimately inform efforts to mitigate its effects on coral communities.more » « less
-
Melzner, Frank (Ed.)With marine heat waves increasing in intensity and frequency due to climate change, it is important to understand how thermal disturbances will alter coral reef ecosystems since stony corals are highly susceptible to mortality from thermally-induced, mass bleaching events. In Moorea, French Polynesia, we evaluated the response and fate of coral following a major thermal stress event in 2019 that caused a substantial amount of branching coral (predominantly Pocillopora ) to bleach and die. We investigated whether Pocillopora colonies that occurred within territorial gardens protected by the farmerfish Stegastes nigricans were less susceptible to or survived bleaching better than Pocillopora on adjacent, undefended substrate. Bleaching prevalence (proportion of the sampled colonies affected) and severity (proportion of a colony’s tissue that bleached), which were quantified for >1,100 colonies shortly after they bleached, did not differ between colonies within or outside of defended gardens. By contrast, the fates of 399 focal colonies followed for one year revealed that a bleached coral within a garden was a third less likely to suffer complete colony death and about twice as likely to recover to its pre-bleaching cover of living tissue compared to Pocillopora outside of a farmerfish garden. Our findings indicate that while residing in a farmerfish garden may not reduce the bleaching susceptibility of a coral to thermal stress, it does help buffer a bleached coral against severe outcomes. This oasis effect of farmerfish gardens, where survival and recovery of thermally-damaged corals are enhanced, is another mechanism that helps explain why large Pocillopora colonies are disproportionately more abundant in farmerfish territories than elsewhere in the lagoons of Moorea, despite gardens being relatively uncommon. As such, some farmerfishes may have an increasingly important role in maintaining the resilience of branching corals as the frequency and intensity of marine heat waves continue to increase.more » « less
-
Ocean deoxygenation is intensifying globally due to human activities – and is emerging as a grave threat to coral reef ecosystems where it can cause coral bleaching and mass mortality. However, deoxygenation is one of many threats to coral reefs, making it essential to understand how prior environmental stress may influence responses to deoxygenation. To address this question, we examined responses of the coral holobiont (i.e., the coral host, Symbiodiniaceae, and the microbiome) to deoxygenation in corals with different environmental stress backgrounds. We outplantedAcropora cervicornisfragments of known genotypes from anin situnursery to two sites in the Florida Keys spanning an inshore-offshore gradient. After four months, fragments from the outplanted corals were transferred to the laboratory, where we tested differences in survivorship, tissue loss, photosynthetic efficiency, Symbiodiniaceae cell density, and coral microbiome composition after persistent exposure to one of four oxygen treatments ranging from extreme deoxygenation (0.5 mg L-1) to normoxia (6 mg L-1). We found that, for the short duration of exposure tested in this study (four days), the entire coral holobiont was resistant to dissolved oxygen (DO) concentrations as low as 2.0 mg L-1, but that the responses of members of the holobiont decoupled at 0.5 mg L-1. In this most extreme treatment, the coral host showed decreased photosynthetic efficiency, tissue loss, and mortality, and lower Symbiodiniaceae densities in a bleaching response, but most microbial taxa remained stable. Although deoxygenation did not cause major community shifts in microbiome composition, the population abundance of some microbial taxa did respond. Site history influenced some responses of the coral host and endosymbiont, but not the coral microbiome, with corals from the more stressful inshore site showing greater susceptibility to subsequent deoxygenation. Our study reveals that coral holobiont members respond differently to deoxygenation, with greater sensitivity in the coral host and Symbiodiniaceae and greater resistance in the coral microbiome, and that prior stress exposure can decrease host tolerance to deoxygenation.more » « less
An official website of the United States government

