In NSCLC, there is a pressing need for immunotherapy predictive biomarkers. The processes underlying B-cell dysfunction, as well as their prognostic importance in NSCLC, are unknown. Tumor-specific B-cell gene co-expression networks were constructed by comparing the Boolean implication modeling of single-cell RNA sequencing of NSCLC tumor B cells and normal B cells. Proliferation genes were selected from the networks using in vitro CRISPR-Cas9/RNA interfering (RNAi) screening data in more than 92 human NSCLC epithelial cell lines. The prognostic and predictive evaluation was performed using public NSCLC transcriptome and proteome profiles. A B cell proliferation and prognostic gene co-expression network was present only in normal lung B cells and missing in NSCLC tumor B cells. A nine-gene signature was identified from this B cell network that provided accurate prognostic stratification using bulk NSCLC tumor transcriptome (n = 1313) and proteome profiles (n = 103). Multiple genes (HLA-DRA, HLA-DRB1, OAS1, and CD74) differentially expressed in NSCLC B cells, peripheral blood lymphocytes, and tumor T cells had concordant prognostic indications at the mRNA and protein expression levels. The selected genes were associated with drug sensitivity/resistance to 10 commonly used NSCLC therapeutic regimens. Lestaurtinib was discovered as a potential repositioning drug for treating NSCLC. 
                        more » 
                        « less   
                    
                            
                            Identification of condition-specific regulatory mechanisms in normal and cancerous human lung tissue
                        
                    
    
            Abstract Background Lung cancer is the leading cause of cancer death in both men and women. The most common lung cancer subtype is non-small cell lung carcinoma (NSCLC) comprising about 85% of all cases. NSCLC can be further divided into three subtypes: adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and large cell lung carcinoma. Specific genetic mutations and epigenetic aberrations play an important role in the developmental transition to a specific tumor subtype. The elucidation of normal lung versus lung tumor gene expression patterns and regulatory targets yields biomarker systems that discriminate lung phenotypes (i.e., biomarkers) and provide a foundation for the discovery of normal and aberrant gene regulatory mechanisms. Results We built condition-specific gene co-expression networks (csGCNs) for normal lung, LUAD, and LUSC conditions. Then, we integrated normal lung tissue-specific gene regulatory networks (tsGRNs) to elucidate control-target biomarker systems for normal and cancerous lung tissue. We characterized co-expressed gene edges, possibly under common regulatory control, for relevance in lung cancer. Conclusions Our approach demonstrates the ability to elucidate csGCN:tsGRN merged biomarker systems based on gene expression correlation and regulation. The biomarker systems we describe can be used to classify and further describe lung specimens. Our approach is generalizable and can be used to discover and interpret complex gene expression patterns for any condition or species. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1659300
- PAR ID:
- 10326143
- Date Published:
- Journal Name:
- BMC Genomics
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1471-2164
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Finding genes biologically directly or indirectly related to lung cancer has been drawing much attention, and many genes directly related to lung cancer have been reported. However, it has not been confirmed whether those published 'key' genes are truly critical to lung cancer formation, i.e., they may be with very limited useful information. As a result, finding essential genes remains a challenging lung cancer research problem. Using a recently developed competing linear factor analysis method in differentially expressed gene detection, we advance the study of lung cancer critical genes detection to a uniformly informative level. A set of common four genes and their functional effects are detected to be differentially expressed in tumor and non- tumor samples with 100% sensitivity and 100% specificity in one study of lung adenocarcinoma (LUAD) and one study of squamous cell lung cancers (LUSC) (two North American cohorts with 20429 genes, 576 and 552 samples respectively). Two additional analyses also gain accuracy of 97.8% sensitivity and 100% specificity in one study of non-small cell lung carcinomas (NSCLC, a European cohort with 20356 genes and 156 samples), and an accuracy of 100% sensitivity and 95% specificity (1 out of 20 non-tumor samples) in one study of ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas (LUAD, a Japanese cohort with 20356 genes and 224 samples). There are some common genes, but different functional effects, within each set of four genes among two North American cohorts and a European cohort and among North American cohorts and the Japanese cohort. These results show the four-gene-based classifiers are robust with different types of lung cancers and different race cohorts and accurate. The functional effects of four genes disclose significantly other mechanisms (mysteries) between LUAD and LUSC. These sets of four genes and their functional effects are considered to be essential for lung cancer studies and practice. These genes' functional effects naturally classify patients into different groups (more than seven subtypes). Subtype information is useful for personalized therapies. The new findings can motivate new lung cancer research in more focused and targeted directions to save lives, protect people, and reduce enormous economic costs in research and lung cancer treatments.more » « less
- 
            There are currently no accurate biomarkers for optimal treatment selection in early-stage non-small cell lung cancer (NSCLC). Novel therapeutic targets are needed to improve NSCLC survival outcomes. This study systematically evaluated the association between genome-scale regulatory network centralities and NSCLC tumorigenesis, proliferation, and survival in early-stage NSCLC patients. Boolean implication networks were used to construct multimodal networks using patient DNA copy number variation, mRNA, and protein expression profiles. T statistics of differential gene/protein expression in tumors versus non-cancerous adjacent tissues, dependency scores in in vitro CRISPR-Cas9/RNA interference (RNAi) screening of human NSCLC cell lines, and hazard ratios in univariate Cox modeling of the Cancer Genome Atlas (TCGA) NSCLC patients were correlated with graph theory centrality metrics. Hub genes in multi-omics networks involving gene/protein expression were associated with oncogenic, proliferative potentials and poor patient survival outcomes (p < 0.05, Pearson’s correlation). Immunotherapy targets PD1, PDL1, CTLA4, and CD27 were ranked as top hub genes within the 10th percentile in most constructed multi-omics networks. BUB3, DNM1L, EIF2S1, KPNB1, NMT1, PGAM1, and STRAP were discovered as important hub genes in NSCLC proliferation with oncogenic potential. These results support the importance of hub genes in NSCLC tumorigenesis, proliferation, and prognosis, with implications in prioritizing therapeutic targets to improve patient survival outcomes.more » « less
- 
            Background Human endogenous retroviruses (HERVs) harbor accessory proteins that influence cellular processes and have been linked to a wide variety of diseases, including cancer. This study investigates locus-specific HERV expression and its association with gene dysregulation in hepatocellular carcinoma (HCC), a highly prevalent and deadly form of liver cancer worldwide. Methods We analyzed RNASeq data from 424 HCC samples from The Cancer Genome Atlas (TCGA), which comprised 371 tumor and 50 matched normal tissues from a total of 371 hepatocellular carcinoma participants. We employed Telescope to identify and quantify HERV expression across the total RNA sequencing data. Results The majority of differentially expressed HERVs exhibited reduced expression in tumor tissue (166 downregulated vs. 50 upregulated), suggesting a potential functional role of HERV expression patterns in shaping the pathophysiological landscape of HCC. Specifically, the suppression of HERV-H family members, which are known to regulate cellular differentiation, may contribute to tumor dedifferentiation, increased plasticity, and enhanced metastatic potential. This loss of differentiation control and increased adaptability may play a critical role in driving the progression of liver cancer. Discussion Our study highlights a significant association of HERV expression with HCC, highlighting the differential regulation of specific HERV families in tumor tissue. For example, HERVH and ERVLE families showed consistent downregulation in tumor samples, while HERVE and HERV9 were more commonly upregulated. These shifts may reflect underlying changes in transcriptional regulation or chromatin structure between normal and malignant tissues. Rather than indicating a singular functional role, the observed expression patterns likely reflect a multifaceted relationship between HERVs and tumor biology. Further studies will be needed to determine whether these expression differences contribute to, or result from, tumor progression and to explore their potential as biomarkers or therapeutic targets.more » « less
- 
            Lung cancer remains the leading cause of cancer death worldwide and non-small cell lung carcinoma (NSCLC) represents 85% of newly diagnosed lung cancers. In this study, we utilized our untargeted assignment tool Small Molecule Isotope Resolved Formula Enumerator (SMIRFE) and ultra-high-resolution Fourier transform mass spectrometry to examine lipid profile differences between paired cancerous and non-cancerous lung tissue samples from 86 patients with suspected stage I or IIA primary NSCLC. Correlation and co-occurrence analysis revealed significant lipid profile differences between cancer and non-cancer samples. Further analysis of machine-learned lipid categories for the differentially abundant molecular formulas identified a high abundance sterol, high abundance and high m/z sphingolipid, and low abundance glycerophospholipid metabolic phenotype across the NSCLC samples. At the class level, higher abundances of sterol esters and lower abundances of cardiolipins were observed suggesting altered stearoyl-CoA desaturase 1 (SCD1) or acetyl-CoA acetyltransferase (ACAT1) activity and altered human cardiolipin synthase 1 or lysocardiolipin acyltransferase activity respectively, the latter of which is known to confer apoptotic resistance. The presence of a shared metabolic phenotype across a variety of genetically distinct NSCLC subtypes suggests that this phenotype is necessary for NSCLC development and may result from multiple distinct genetic lesions. Thus, targeting the shared affected pathways may be beneficial for a variety of genetically distinct NSCLC subtypes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    