skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Hydrogen Bonds in Interactions between [PdCl4]2− Dianions in Crystal
[PdCl4]2− dianions are oriented within a crystal in such a way that a Cl of one unit approaches the Pd of another from directly above. Quantum calculations find this interaction to be highly repulsive with a large positive interaction energy. The placement of neutral ligands in their vicinity reduces the repulsion, but the interaction remains highly endothermic. When the ligands acquire a unit positive charge, the electrostatic component and the full interaction energy become quite negative, signalling an exothermic association. Raising the charge on these counterions to +2 has little further stabilizing effect, and in fact reduces the electrostatic attraction. The ability of the counterions to promote the interaction is attributed in part to the H-bonds which they form with both dianions, acting as a sort of glue.  more » « less
Award ID(s):
1954310
PAR ID:
10326182
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Molecules
Volume:
27
Issue:
7
ISSN:
1420-3049
Page Range / eLocation ID:
2144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The interaction between two square palladium (II) dianions PdX42−(X=Cl, Br) is evaluated by crystal study and analyzed by quantum chemical means. The arrangement within the crystal between each pair of PdX42−neighbors is suggestive of a Pd⋅⋅⋅X noncovalent bond, which is verified by a battery of computational protocols. While the potential between these two bare dianions is computed to be highly repulsive, the introduction of even just two counterions makes this interaction attractive, as does the presence of a constellation of point charges. It is concluded that there is indeed a stabilizing Pd⋅⋅⋅X bond, but it is incapable of overcoming the strong coulombic repulsive force between two dianions. While the QTAIM, NBO, and NCI tools can indicate the presence of a noncovalent bond, they are unable to distinguish an attractive from a repulsive interaction. 
    more » « less
  2. Abstract The ability of an anion to serve as electron‐accepting Lewis acid in a noncovalent bond is assessed via DFT calculations. NH3is taken as the common base, and is paired with a host of AClnanions, with central atom A=Ca, Sr, Mg, Te, Sb, Hg, Zn, Ag, Ga, Ti, Sn, I, and B. Each anion reacts through its σ or π‐hole although the electrostatic potential of this hole is quite negative in most cases. Despite the contact between this negative hole and the negative region of the approaching nucleophile, the electrostatic component of the interaction energy of each bond is highly favorable, and accounts for more than half of the total attractive energy. The double negative charge of dianions precludes a stable complex with NH3
    more » « less
  3. The molecular features that dictate interactions between functionalized nanoparticles and biomolecules are not well understood. This is in part because for highly charged nanoparticles in solution, establishing a clear connection between the molecular features of surface ligands and common experimental observables such as ζ potential requires going beyond the classical models based on continuum and mean field models. Motivated by these considerations, molecular dynamics simulations are used to probe the electrostatic properties of functionalized gold nanoparticles and their interaction with a charged peptide in salt solutions. Counterions are observed to screen the bare ligand charge to a significant degree even at the moderate salt concentration of 50 mM. As a result, the apparent charge density and ζ potential are largely insensitive to the bare ligand charge densities, which fall in the range of ligand densities typically measured experimentally for gold nanoparticles. While this screening effect was predicted by classical models such as the Manning condensation theory, the magnitudes of the apparent surface charge from microscopic simulations and mean-field models are significantly different. Moreover, our simulations found that the chemical features of the surface ligand ( e.g. , primary vs. quaternary amines, heterogeneous ligand lengths) modulate the interfacial ion and water distributions and therefore the interfacial potential. The importance of interfacial water is further highlighted by the observation that introducing a fraction of hydrophobic ligands enhances the strength of electrostatic binding of the charged peptide. Finally, the simulations highlight that the electric double layer is perturbed upon binding interactions. As a result, it is the bare charge density rather than the apparent charge density or ζ potential that better correlates with binding affinity of the nanoparticle to a charged peptide. Overall, our study highlights the importance of molecular features of the nanoparticle/water interface and underscores a set of design rules for the modulation of electrostatic driven interactions at nano/bio interfaces. 
    more » « less
  4. Inspection of the arrangement of tetrachloridopalladate( ii ) centers in a crystalline solid places the Cl of one [PdCl 4 ] 2− directly above the Pd center of its neighbor. A survey of the CSD provides 22 more examples of such MX 4 2− ⋯MX 4 2− complexes, with M being a Group 10 metal and X = Cl, Br, or I. Quantum calculations attribute this arrangement to a π-hole bond wherein Cl lone pairs of one unit transfer charge to vacant orbitals above the Pd center of its neighbor. The stabilizing effect of this bond must overcome the strong Coulombic repulsion between the two dianions, which is facilitated by a polarizable environment as would be present in a crystal, but much more so when the effects of the neighboring counterions are factored in. These conclusions are extended to other [MX 4 ] 2− homodimers, where M represents other members of Group 10, namely Ni and Pt. 
    more » « less
  5. Abstract We report a new class of hydrophobic polymer ligands with quaternary ammonium head groups for surface modification of noble metal nanoparticles (NPs). Quaternary ammonium ligands bind NPs through non‐covalent electrostatic interactions, producing polymer‐grafted NPs with high colloidal and chemical stability. These polymers having charged head groups offer powerful strategies to tailor the structure and function of metal‐electrolyte interfaces in electrocatalytic systems. The ammonium head groups serve as ionic reservoirs that preconcentrate bicarbonate counterions at the surface of nanocatalysts, while the hydrophobic polymer backbones restructure local hydrogen‐bonding networks, modulating water and ion transport dynamics. These interfacial effects promote CO2electroreduction, particularly under diffusion‐limited conditions, resulting in a CO Faradaic efficiency (FE) exceeding 90%. 
    more » « less