skip to main content


Title: Testing and Evaluation of Radio Frequency Immunity of Unmanned Aerial Vehicles For Bridge Inspection
Recent technological advances have led to an increase in the adoption of Unmanned Aerial Vehicles (UAVs) in a variety of use-case scenarios. In particular, Departments of Transportation in several states in the United States have been exploring the use of UAVs for bridge and infrastructure inspections to improve safety and reduce the costs of the inspection process. UAVs are remotely piloted from a cockpit or a ground station via radio channels. The UAV's state information and payload information are also transmitted to the cockpit/ground station via radio frequency (RF) signals. The RF channels that are commonly used by most UAVs are 72-73, 902-928 and 2400-2483.5 MHz bands, which is also shared by several other communication protocols such as, WiFi and ZigBee networks, and therefore, the interference effects with the other services on the UAV's operation performance cannot be overlooked, particularly to maintain the minimum distance from the close by surfaces while flying alongside and underneath the bridges to achieve the best results. The loss of signal or even signal strength during such close flights can cause damage to the UAV. Especially while inspecting the bridges located in the urban areas that involve a lot of RF communication around due to presence of sever RC devices providing different services. Conventional Electromagnetic Compatibility (EMC) adherence requirements imposed on electronic systems are not adequate for UAVs due to their airborne nature and the presence of the other RF sources in the environment. Thus, in this work, we investigate the compliance of EMC requirements by designing and conducting field experiments to expose the UAVs to electromagnetic interference and distortions that are likely to be encountered during the UAV operation. The results of this work will enable us to assess the level of RF immunity of the general-purpose UAVs to aid in the selection of a suitable UAV platform for bridge inspection and develop safety procedures for minimizing the impact of RF interference.  more » « less
Award ID(s):
1832110
NSF-PAR ID:
10326307
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2021 IEEE Aerospace Conference
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To integrate unmanned aerial vehicles (UAVs) in future large-scale deployments, a new wireless communication paradigm, namely, the cellular-connected UAV has recently attracted interest. However, the line-of-sight dominant air-to-ground channels along with the antenna pattern of the cellular ground base stations (GBSs) introduce critical interference issues in cellular-connected UAV communications. In particular, the complex antenna pattern and the ground reflection (GR) from the down-tilted antennas create both coverage holes and patchy coverage for the UAVs in the sky, which leads to unreliable connectivity from the underlying cellular network. To overcome these challenges, in this paper, we propose a new cellular architecture that employs an extra set of co-channel antennas oriented towards the sky to support UAVs on top of the existing down-tilted antennas for ground user equipment (GUE). To model the GR stemming from the down-tilted antennas, we propose a path-loss model, which takes both antenna radiation pattern and configuration into account. Next, we formulate an optimization problem to maximize the minimum signal-to-interference ratio (SIR) of the UAVs by tuning the up-tilt (UT) angles of the up-tilted antennas. Since this is an NP-hard problem, we propose a genetic algorithm (GA) based heuristic method to optimize the UT angles of these antennas. After obtaining the optimal UT angles, we integrate the 3GPP Release-10 specified enhanced inter-cell interference coordination (eICIC) to reduce the interference stemming from the down-tilted antennas. Our simulation results based on the hexagonal cell layout show that the proposed interference mitigation method can ensure higher minimum SIRs for the UAVs over baseline methods while creating minimal impact on the SIR of GUEs. 
    more » « less
  2. Radio frequency identification (RFID) is a technology for automated identification of objects and people. RFID technology is expected to find extensive use in applications related to the Internet of Things, and in particular applications of Internet of Battlefield Things. Of particular interest are passive RFID tags due to a number of their salient advantages. Such tags, lacking energy sources of their own, use backscattering of the power of an RF source (a reader) to communicate. Recently, passive RFID tag-to-tag (T2T) communication has been demonstrated, via which tags can directly communicate with each other and share information. This opens the possibility of building a Network of Tags (NeTa), in which the passive tags communicate among themselves to perform data processing functions. Among possible applications of NeTa are monitoring services in hard-to-reach locations. As an essential step toward implementation of NeTa, we consider a novel multi-hop network architecture; in particular, with the proposed novel turbo backscattering operation, inter-tag distances can be significantly increased. Due to the interference among tags’ transmissions, one of the main technical challenges of implementing such the NeTa architecture is the routing protocol design. In this paper, we introduce a design of a routing protocol, which is based on a solution of a non-linear binary optimization problem. We study the performance of the proposed protocol and investigate impacts of several network factors, such as the tag density and the transmit power of the reader. 
    more » « less
  3. We propose a framework called AirID that identifies friendly/authorized UAVs using RF signals emitted by radios mounted on them through a technique called as RF finger- printing. Our main contribution is a method of intentionally inserting ‘signatures’ in the transmitted I/Q samples from each UAV, which are detected through a deep convolutional neural network (CNN) at the physical layer, without affecting the ongoing UAV data communication process. Specifically, AirID addresses the challenge of how to overcome the channel-induced perturbations in the transmitted signal that lowers identification accuracy. AirID is implemented using Ettus B200mini Software Defined Radios (SDRs) that serve as both static ground UAV identifiers, as well as mounted on DJI Matrice M100 UAVs to perform the identification collaboratively as an aerial swarm. AirID tackles the well-known problem of low RF fingerprinting accuracy in ‘train on one day test on another day’ conditions as the aerial environment is constantly changing. Results reveal 98% identification accuracy for authorized UAVs, while maintaining a stable communication BER of 10^−4 for the evaluated cases. 
    more » « less
  4. null (Ed.)
    Modern Public Safety Networks (PSNs) are assisted by Unmanned Aerial Vehicles (UAVs) to provide a resilient communication paradigm during catastrophic events. In this context, we propose a distributed user-centric risk-aware resource management framework in UAV-assisted PSNs supported by both a static UAV and a mobile UAV. The mobile UAV is entitled to a larger portion of the available spectrum due to its capability and flexibility to re-position itself, and therefore establish better communication channel conditions to the users, compared to the static UAV. However, the potential over-exploitation of the mobile UAV-based communication by the users may lead to the mobile UAV’s failure to serve the users due to the increased levels of interference, consequently introducing risk in the user decisions. To capture this uncertainty, we follow the principles of Prospect Theory and design a user’s prospect-theoretic utility function that reflects user’s risk-aware behavior regarding its transmission power investment to the static and/or mobile UAV-based communication option. A non-cooperative game among the users is formulated, where each user determines its power investment strategy to the two available communication choices in order to maximize its expected prospect-theoretic utility. The existence and uniqueness of a Pure Nash Equilibrium (PNE) is proven and the convergence of the users’ strategies to it is shown. An iterative distributed and low-complexity algorithm is introduced to determine the PNE. The performance of the proposed user-centric risk-aware resource management framework in terms of users’ achievable data rate and spectrum utilization, is achieved via modeling and simulation. Furthermore, its superiority and benefits are demonstrated, by comparing its performance against other existing approaches with regards to UAV selection and spectrum utilization. 
    more » « less
  5. Mission-critical wireless networks are being upgraded to 4G long-term evolution (LTE). As opposed to capacity, these networks require very high reliability and security as well as easy deployment and operation in the field. Wireless communication systems have been vulnerable to jamming, spoofing and other radio frequency attacks since the early days of analog systems. Although wireless systems have evolved, important security and reliability concerns still exist. This paper presents our methodology and results for testing 4G LTE operating in harsh signaling environments. We use software-defined radio technology and open-source software to develop a fully configurable protocol-aware interference waveform. We define several test cases that target the entire LTE signal or part of it to evaluate the performance of a mission-critical production LTE system. Our experimental results show that synchronization signal interference in LTE causes significant throughput degradation at low interference power. By dynamically evaluating the performance measurement counters, the k-nearest neighbor classification method can detect the specific RF signaling attack to aid in effective mitigation. 
    more » « less