Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Precise monitoring of individual crop growth and health status is crucial for precision agriculture practices. However, traditional inspection methods are time-consuming, labor-intensive, prone to human error, and may not provide the comprehensive coverage required for the detailed analysis of crop variability across an entire field. This research addresses the need for efficient and high-resolution crop monitoring by leveraging Unmanned Aerial Vehicle (UAV) imagery and advanced computational techniques. The primary goal was to develop a methodology for the precise identification, extraction, and monitoring of individual corn crops throughout their growth cycle. This involved integrating UAV-derived data with image processing, computational geometry, and machine learning techniques. Bi-weekly UAV imagery was captured at altitudes of 40 m and 70 m from 30 April to 11 August, covering the entire growth cycle of the corn crop from planting to harvest. A time-series Canopy Height Model (CHM) was generated by analyzing the differences between the Digital Terrain Model (DTM) and the Digital Surface Model (DSM) derived from the UAV data. To ensure the accuracy of the elevation data, the DSM was validated against Ground Control Points (GCPs), adhering to standard practices in remote sensing data verification. Local spatial analysis and image processing techniques were employed to determine the local maximum height of each crop. Subsequently, a Voronoi data model was developed to delineate individual crop canopies, successfully identifying 13,000 out of 13,050 corn crops in the study area. To enhance accuracy in canopy size delineation, vegetation indices were incorporated into the Voronoi model segmentation, refining the initial canopy area estimates by eliminating interference from soil and shadows. The proposed methodology enables the precise estimation and monitoring of crop canopy size, height, biomass reduction, lodging, and stunted growth over time by incorporating advanced image processing techniques and integrating metrics for quantitative assessment of fields. Additionally, machine learning models were employed to determine relationships between the canopy sizes, crop height, and normalized difference vegetation index, with Polynomial Regression recording an R-squared of 11% compared to other models. This work contributes to the scientific community by demonstrating the potential of integrating UAV technology, computational geometry, and machine learning for accurate and efficient crop monitoring at the individual plant level.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Fuzzy logic controllers can handle complex systems by incorporating expert’s knowledge in the absence of formal mathematical models. Further, fuzzy logic controllers can effectively capture and accommodate uncertainties that are inherent in real-world controlled systems. On the other hand, Robot Operating System (ROS) has been widely used for many robotic applications due to its modular structure and efficient message-passing mechanisms for the integration of system’s components. For this reason, Robot Operating System is an ideal tool for developing software stacks for robotic applications. This paper develops a generic and configurable Robot Operating System package for the implementation of fuzzy logic controllers, particularly type-1 and interval type-2, which are based on either Mamdani or Takagi-Sugeno-Kang fuzzy inference mechanisms. This is achieved by employing a systematic object-oriented approach using the Unified Model Language (UML) to implement the fuzzy inference system as a single class that is composed of fuzzifier, inference, and defuzzifier classes. The deployment of the developed Robot Operating System package is demonstrated by implementing an interval type-2 fuzzy logic control of an Unmanned Aerial Vehicle (UAV).more » « less
-
In this paper, an adjustable autonomy framework is proposed for Human-Robot Collaboration (HRC) in which a robot uses a reinforcement learning mechanism guided by a human operator's rewards in an initially unknown workspace. Within the proposed framework, the robot can adjust its autonomy level in an HRC setting that is represented by a Markov Decision Process. A novel Q-learning mechanism with an integrated greedy approach is implemented for robot learning to capture the correct actions and the robot's mistakes for adjusting its autonomy level. The proposed HRC framework can adapt to changes in the workspace, and can adjust the autonomy level, provided consistent human operator's reward. The developed algorithm is applied to a realistic HRC setting, involving a Baxter humanoid robot. The experimental results confirm the capability of the developed framework to successfully adjust the robot's autonomy level in response to changes in the human operator's commands or the workspace.more » « less