skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Computationally Effective Pedestrian Detection using Constrained Fusion with Body Parts for Autonomous Driving
This paper addresses the problem of detecting pedestrians using an enhanced object detection method. In particular, the paper considers the occluded pedestrian detection problem in autonomous driving scenarios where the balance of performance between accuracy and speed is crucial. Existing works focus on learning representations of unique persons independent of body parts semantics. To achieve a real-time performance along with robust detection, we introduce a body parts based pedestrian detection architecture where body parts are fused through a computationally effective constraint optimization technique. We demonstrate that our method significantly improves detection accuracy while adding negligible runtime overhead. We evaluate our method using a real-world dataset. Experimental results show that the proposed method outperforms existing pedestrian detection methods.  more » « less
Award ID(s):
2018879 2000320
PAR ID:
10326310
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 Fifth IEEE International Conference on Robotic Computing (IRC)
Page Range / eLocation ID:
106 to 110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vehicle-to-pedestrian communication could significantly improve pedestrian safety at signalized intersections. However, it is unlikely that pedestrians will typically be carrying a low latency communication-enabled device with an activated pedestrian safety application in their hand-held device all the time. Because of this, multiple traffic cameras at a signalized intersection could be used to accurately detect and locate pedestrians using deep learning, and broadcast safety alerts related to pedestrians to warn connected and automated vehicles around signalized intersections. However, the unavailability of high-performance roadside computing infrastructure and the limited network bandwidth between traffic cameras and the computing infrastructure limits the ability of real-time data streaming and processing for pedestrian detection. In this paper, we describe an edge computing-based real-time pedestrian detection strategy that combines a pedestrian detection algorithm using deep learning and an efficient data communication approach to reduce bandwidth requirements while maintaining high pedestrian detection accuracy. We utilize a lossy compression technique on traffic camera data to determine the tradeoff between the reduction of the communication bandwidth requirements and a defined pedestrian detection accuracy. The performance of the pedestrian detection strategy is measured in relation to pedestrian classification accuracy with varying peak signal-to-noise ratios. The analyses reveal that we detect pedestrians by maintaining a defined detection accuracy with a peak signal-to-noise ratio 43 dB while reducing the communication bandwidth from 9.82 Mbits/sec to 0.31 Mbits/sec, a 31× reduction. 
    more » « less
  2. This paper presents a novel method for pedestrian detection and tracking by fusing camera and LiDAR sensor data. To deal with the challenges associated with the autonomous driving scenarios, an integrated tracking and detection framework is proposed. The detection phase is performed by converting LiDAR streams to computationally tractable depth images, and then, a deep neural network is developed to identify pedestrian candidates both in RGB and depth images. To provide accurate information, the detection phase is further enhanced by fusing multi-modal sensor information using the Kalman filter. The tracking phase is a combination of the Kalman filter prediction and an optical flow algorithm to track multiple pedestrians in a scene. We evaluate our framework on a real public driving dataset. Experimental results demonstrate that the proposed method achieves significant performance improvement over a baseline method that solely uses image-based pedestrian detection. 
    more » « less
  3. Weakly supervised pose estimation can be used to assist unsupervised body part segmentation and concealed item detection. The accuracy of pose estimation is essential for precise body part segmentation and accurate concealed item detection. In this paper, we show how poses obtained from an RGB pretrained 2D pose detector can be modified for the backscatter image domain. The 2D poses are refined using RANSAC bundle adjustment to minimize the projection loss in 3D. Furthermore, we show how 2D poses can be optimized using a newly proposed 3D-to-2D pose correction network weakly supervised with pose prior regularizers and multi-view pose and posture consistency losses. The optimized 2D poses are used to segment human body parts. We then train a body-part-aware anomaly detection network to detect foreign (concealed threat) objects on segmented body parts. Our work is applied to the TSA passenger screening dataset containing millimeter wave scan images of airport travelers annotated with only binary labels that indicate whether a foreign object is concealed on a body part. Our proposed approach significantly improves the detection accuracy of TSA 2D backscatter images in existing works with a state-of-the-art performance of 97% F1-score, 0.0559 log-loss on the TSA-PSD test-set, and a 74% reduction in 2D pose error. 
    more » « less
  4. null (Ed.)
    As camera quality improves and their deployment moves to areas with limited bandwidth, communication bottlenecks can impair real-time constraints of an intelligent transportation systems application, such as video-based real-time pedestrian detection. Video compression reduces the bandwidth requirement to transmit the video which degrades the video quality. As the quality level of the video decreases, it results in the corresponding decreases in the accuracy of the vision-based pedestrian detection model. Furthermore, environmental conditions, such as rain and night-time darkness impact the ability to leverage compression by making it more difficult to maintain high pedestrian detection accuracy. The objective of this study is to develop a real-time error-bounded lossy compression (EBLC) strategy to dynamically change the video compression level depending on different environmental conditions to maintain a high pedestrian detection accuracy. We conduct a case study to show the efficacy of our dynamic EBLC strategy for real-time vision-based pedestrian detection under adverse environmental conditions. Our strategy dynamically selects the lossy compression error tolerances that maintain a high detection accuracy across a representative set of environmental conditions. Analyses reveal that for adverse environmental conditions, our dynamic EBLC strategy increases pedestrian detection accuracy up to 14% and reduces the communication bandwidth up to 14 × compared to the state-of-the-practice. Moreover, we show our dynamic EBLC strategy is independent of pedestrian detection models and environmental conditions allowing other detection models and environmental conditions to be easily incorporated. 
    more » « less
  5. Alam, Mohammad S.; Asari, Vijayan K. (Ed.)
    Iris recognition is one of the well-known areas of biometric research. However, in real-world scenarios, subjects may not always provide fully open eyes, which can negatively impact the performance of existing systems. Therefore, the detection of blinking eyes in iris images is crucial to ensure reliable biometric data. In this paper, we propose a deep learning-based method using a convolutional neural network to classify blinking eyes in off-angle iris images into four different categories: fully-blinked, half-blinked, half-opened, and fully-opened. The dataset used in our experiments includes 6500 images of 113 subjects and contains images of a mixture of both frontal and off-angle views of the eyes from -50 to 50 in gaze angle. We train and test our approach using both frontal and off-angle images and achieve high classification performance for both types of images. Compared to training the network with only frontal images, our approach shows significantly better performance when tested on off-angle images. These findings suggest that training the model with a more diverse set of off-angle images can improve its performance for off-angle blink detection, which is crucial for real-world applications where the iris images are often captured at different angles. Overall, the deep learning-based blink detection method can be used as a standalone algorithm or integrated into existing standoff biometrics frameworks to improve their accuracy and reliability, particularly in scenarios where subjects may blink. 
    more » « less