skip to main content


Title: Causal Support: Modeling Causal Inferences with Visualizations
Analysts often make visual causal inferences about possible data-generating models. However, visual analytics (VA) software tends to leave these models implicit in the mind of the analyst, which casts doubt on the statistical validity of informal visual “insights”. We formally evaluate the quality of causal inferences from visualizations by adopting causal support—a Bayesian cognition model that learns the probability of alternative causal explanations given some data—as a normative benchmark for causal inferences. We contribute two experiments assessing how well crowdworkers can detect (1) a treatment effect and (2) a confounding relationship. We find that chart users’ causal inferences tend to be insensitive to sample size such that they deviate from our normative benchmark. While interactively cross-filtering data in visualizations can improve sensitivity, on average users do not perform reliably better with common visualizations than they do with textual contingency tables. These experiments demonstrate the utility of causal support as an evaluation framework for inferences in VA and point to opportunities to make analysts’ mental models more explicit in VA software.  more » « less
Award ID(s):
1930642
PAR ID:
10326393
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE transactions on visualization and computer graphics
Volume:
28
Issue:
1
ISSN:
2160-9306
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Visualizations of data provide a proven method for analysts to explore and make data-driven discoveries. However, current visualization tools provide only limited support for hypothesis-driven analyses, and often lack capabilities that would allow users to visually test the fit of their conceptual models against the data. This imbalance could bias users to overly rely on exploratory visual analysis as the principal mode of inquiry, which can be detrimental to discovery. To address this gap, we propose a new paradigm for ‘concept-driven’ visual analysis. In this style of analysis, analysts share their conceptual models and hypotheses with the system. The system then uses those inputs to drive the generation of visualizations, while providing plots and interactions to explore places where models and data disagree. We discuss key characteristics and design considerations for concept-driven visualizations, and report preliminary findings from a formative study. 
    more » « less
  2. Counterfactuals – expressing what might have been true under different circumstances – have been widely applied in statistics and machine learning to help understand causal relationships. More recently, counterfactuals have begun to emerge as a technique being applied within visualization research. However, it remains unclear to what extent counterfactuals can aid with visual data communication. In this paper, we primarily focus on assessing the quality of users’ understanding of data when provided with counterfactual visualizations. We propose a preliminary model of causality comprehension by connecting theories from causal inference and visual data communication. Leveraging this model, we conducted an empirical study to explore how counterfactuals can improve users’ understanding of data in static visualizations. Our results indicate that visualizing counterfactuals had a positive impact on participants’ interpretations of causal relations within datasets. These results motivate a discussion of how to more effectively incorporate counterfactuals into data visualizations. 
    more » « less
  3. Data visualization provides a powerful way for analysts to explore and make data-driven discoveries. However, current visual analytic tools provide only limited support for hypothesis-driven inquiry, as their built-in interactions and workflows are primarily intended for exploratory analysis. Visualization tools notably lack capabilities that would allow users to visually and incrementally test the fit of their conceptual models and provisional hypotheses against the data. This imbalance could bias users to overly rely on exploratory analysis as the principal mode of inquiry, which can be detrimental to discovery. In this paper, we introduce Visual (dis) Confirmation, a tool for conducting confirmatory, hypothesis-driven analyses with visualizations. Users interact by framing hypotheses and data expectations in natural language. The system then selects conceptually relevant data features and automatically generates visualizations to validate the underlying expectations. Distinctively, the resulting visualizations also highlight places where one's mental model disagrees with the data, so as to stimulate reflection. The proposed tool represents a new class of interactive data systems capable of supporting confirmatory visual analysis, and responding more intelligently by spotlighting gaps between one's knowledge and the data. We describe the algorithmic techniques behind this workflow. We also demonstrate the utility of the tool through a case study. 
    more » « less
  4. This study provides a normative theory for how Bayesian causal inference can be implemented in neural circuits. In both cognitive processes such as causal reasoning and perceptual inference such as cue integration, the nervous systems need to choose different models representing the underlying causal structures when making inferences on external stimuli. In multisensory processing, for example, the nervous system has to choose whether to integrate or segregate inputs from different sensory modalities to infer the sensory stimuli, based on whether the inputs are from the same or different sources. Making this choice is a model selection problem requiring the computation of Bayes factor, the ratio of likelihoods between the integration and the segregation models. In this paper, we consider the causal inference in multisensory processing and propose a novel generative model based on neural population code that takes into account both stimulus feature and stimulus reliability in the inference. In the case of circular variables such as heading direction, our normative theory yields an analytical solution for computing the Bayes factor, with a clear geometric interpretation, which can be implemented by simple additive mechanisms with neural population code. Numerical simulation shows that the tunings of the neurons computing Bayes factor are consistent with the "opposite neurons" discovered in dorsal medial superior temporal (MSTd) and the ventral intraparietal (VIP) areas for visual-vestibular processing. This study illuminates a potential neural mechanism for causal inference in the brain. 
    more » « less
  5. Narrative sensemaking is a fundamental process to understand sequential information. Narrative maps are a visual representation framework that can aid analysts in this process. They allow analysts to understand the big picture of a narrative, uncover new relationships between events, and model connections between storylines. As a sensemaking tool, narrative maps have applications in intelligence analysis, misinformation modeling, and computational journalism. In this work, we seek to understand how analysts construct narrative maps in order to improve narrative map representation and extraction methods. We perform an experiment with a data set of news articles. Our main contribution is an analysis of how analysts construct narrative maps. The insights extracted from our study can be used to design narrative map visualizations, extraction algorithms, and visual analytics tools to support the sensemaking process. 
    more » « less