In recent years, the “search as learning” community has argued that search systems should be designed to support learning. We report on a lab study in which we manipulated the learning objectives associated with search tasks assigned to participants. We manipulated learning objectives by leveraging Anderson and Krathwohl’s taxonomy of learning (A&K’s taxonomy) [2], which situates learning objectives at the intersection of two orthogonal dimensions: the cognitive process and the knowledge type dimension. Participants in our study completed tasks with learning objectives that varied across three cognitive processes (apply, evaluate, and create) and three knowledge types (factual, conceptual, and procedural knowledge). We focus on the effects of the task’s cognitive process and knowledge type on participants’ pre-/post-task perceptions and search behaviors. Our results found that the three knowledge types considered in our study had a greater effect than the three cognitive processes. Specifically, conceptual knowledge tasks were perceived to be more difficult and required more search activity. We discuss implications for designing search systems that support learning. 
                        more » 
                        « less   
                    
                            
                            Understanding the “Pathway” Towards a Searcher’s Learning Objective
                        
                    
    
            Search systems are often used to support learning-oriented goals. This trend has given rise to the “searchas- learning” movement, which proposes that search systems should be designed to support learning. To this end, an important research question is: How does a searcher’s type of learning objective (LO) influence their trajectory (or pathway) toward that objective? We report on a lab study (N = 36) in which participants gathered information to meet a specific type of LO. To characterize LOs and pathways, we leveraged Anderson and Krathwohl’s (A&K’s) taxonomy [3]. A&K’s taxonomy situates LOs at the intersection of two orthogonal dimensions: (1) cognitive process (CP) (remember, understand, apply, analyze, evaluate, and create) and (2) knowledge type (factual, conceptual, procedural, and metacognitive knowledge). Participants completed learning-oriented search tasks that varied along three CPs (apply, evaluate, and create) and three knowledge types (factual, conceptual, and procedural knowledge). A pathway is defined as a sequence of learning instances (e.g., subgoals) that were also each classified into cells from A&K’s taxonomy. Our study used a think-aloud protocol, and pathways were generated through a qualitative analysis of participants’ thinkaloud comments and recorded screen activities. We investigate three research questions. First, in RQ1, we study the impact of the LO on pathway characteristics (e.g., pathway length). Second, in RQ2, we study the impact of the LO on the types of A&K cells traversed along the pathway. Third, in RQ3, we study common and uncommon transitions between A&K cells along pathways conditioned on the knowledge type of the objective. We discuss implications of our results for designing search systems to support learning. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1718295
- PAR ID:
- 10326507
- Date Published:
- Journal Name:
- ACM transactions on information systems
- Volume:
- 40
- Issue:
- 4
- ISSN:
- 1046-8188
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            There is a growing body of research in the Search as Learning community that recognizes the need for users to learn during search, but modern search systems have yet to adapt to support this need. Our research proposes three research goals toward addressing the support of user learning during search. Research goal 1 (RG1) introduces a more precise and reliable metric of assessing user learning. Anderson & Krathwohl’s 2-dimensional taxonomy is used as a framework to develop learning objectives and assessment questions to measure user learning during search. Additionally, Anderson & Krathwohl’s taxonomy is used as a coding scheme to outline the pathways users traverse along the way to a particular learning objective. Research goal 2 (RG2) investigates the prediction of learning objectives using behavioral measures. Finally, research goal 3 (RG3) proposes a search system that presents information relevant to the user based on their current learning sub-goal and scaffolds information based on the pathways they are likely to traverse given a particular learning objective.more » « less
- 
            null (Ed.)Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems.more » « less
- 
            null (Ed.)Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems.more » « less
- 
            Search tasks play an important role in the study and development of interactive information retrieval (IIR) systems. Prior work has examined how search tasks vary along dimensions such as the task’s main activity, end goal, structure, and complexity. Recently, researchers have been exploring task complexity from the perspective of cognitive complexity—related to the types (and variety) of mental activities required by the task. Anderson & Krathwohl’s two-dimensional taxonomy of learning has been a commonly used framework for investigating tasks from the perspective of cognitive complexity [1]. A&K’s 2D taxonomy involves a cognitive process dimension and an orthogonal knowledge dimension. Prior IIR research has successfully leveraged the cognitive process dimension of this 2D taxonomy to develop search tasks and investigate their effects on searchers’ needs, perceptions, and behaviors. However, the knowledge dimension of the taxonomy has been largely ignored. In this conceptual paper, we argue that future IIR research should consider both dimensions of A&K’s taxonomy. Specifically, we discuss related work, present details on both dimensions of A&K’s taxonomy, and explain how to use the taxonomy to develop search tasks and learning assessment materials. Additionally, we discuss how considering both dimensions of A&K’s taxonomy has important implications for future IIR research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    