skip to main content


Title: An Examination of Fungal and Bacterial Assemblages in Bulk and Rhizosphere Soils under Solanum tuberosum in Southeastern Wyoming, USA
Solanum tuberosum, commonly known as potato, is the most important non-cereal crop in the world. However, its cultivation is prone to disease and other issues. In recent years, a newfound interest in the soil microbiome and the potential benefits it may convey has led researchers to study plant–microbe interactions in great detail and has led to the identification of putative beneficial microbial taxa. In this survey, we examined fungal and bacterial diversity using high-throughput sequencing in soils under a potato crop in southeastern Wyoming, USA. Our results show decreased microbial diversity in the rhizosphere, with increases in the abundances of arbuscular mycorrhizal fungi as well as pathogenic microbes. We show coarse taxonomic differences in microbial assemblages when comparing the bulk and rhizosphere soils for bacteria but not for fungi, suggesting that the two kingdoms respond differently to the selective pressures of the rhizosphere. Using cooccurrence network analysis, we identify microbes that may serve as keystone taxa and provide benefits to their host plants through competitive exclusion of detrimental pathogenic taxa and increased nutrient availability. Our results provide additional information on the structure and complexity of the potato rhizosphere microbiome and highlight candidate taxa for microbial isolation and inoculation.  more » « less
Award ID(s):
1655726
NSF-PAR ID:
10326586
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Microbiology
Volume:
1
Issue:
2
ISSN:
2673-8007
Page Range / eLocation ID:
162 to 176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although the importance of the soil microbiome in mediating plant community structures and functions has been increasingly emphasized in ecological studies, the biological processes driving crop diversity overyielding remain unexplained in agriculture. Based on the plant–soil feedback (PSF) theory and method, we quantified to what extent and how soil microbes contributed to intercropping overyielding.

    Soils were collected as inocula and sequenced from a unique 10‐year field experiment, consisting of monoculture, intercropping and rotation planted with wheat (Triticum aestivum), maize (Zea mays)or faba bean (Vicia faba). A PSF greenhouse study was conducted to test microbial effects on three crops' growth in monoculture or intercropping.

    In wheat & faba bean (W&F) and maize & faba bean (M&F) systems, soil microbes drove intercropping overyielding compared to monoculture, with 28%–51% of the overyielding contributed by microbial legacies. The overyielding effects resulted from negative PSFs in both systems, as crops, in particular faba bean grew better in soils conditioned by other crops than itself. Moreover, faba bean grew better in soils from intercropping or rotation than from the average of monocultures, indicating a strong positive legacy effect of multispecies cropping systems. However, with positive PSF and negative legacy benefit effect of intercropping/rotation, we did not observe significant overyielding in the W&M system.

    With more bacterial and fungal dissimilarities by metabarcoding in heterospecific than its own soil, the better it improved faba bean growth. More detailed analysis showed faba bean monoculture soil accumulated more putative pathogens with higherFusariumrelative abundance and moreFusarium oxysporumgene copies by qPCR, while in heterospecific soils, there were less pathogenic effects when cereals were engaged. Further analysis in maize/faba bean intercropping also showed an increase of rhizobia relative abundance.

    Synthesis and applications. Our results demonstrate a soil microbiome‐mediated advantage in intercropping through suppression of the negative PSF of pathogens and increasing beneficial microbes. As microbial mediation of overyielding is context‐dependent, we conclude that the dynamics of both beneficial and pathogenic microbes should be considered in designing cropping systems for sustainable agriculture, particularly including combinations of legumes and cereals.

     
    more » « less
  2. Abstract

    Plant–soil feedbacks (PSFs) drive plant community diversity via interactions between plants and soil microbes. However, we know little about how frequently PSFs affect plants at the seed stage, and the compositional shifts in fungi that accompany PSFs on germination.

    We conducted a pairwise PSF experiment to test whether seed germination was differentially impacted by conspecific versus heterospecific soils for seven grassland species. We used metagenomics to characterize shifts in fungal community composition in soils conditioned by each plant species. To investigate whether changes in the abundance of certain fungal taxa were associated with multiple PSFs, we assigned taxonomy to soil fungi and identified putative pathogens that were significantly more abundant in soils conditioned by plant species that experienced negative or positive PSFs.

    We observed negative, positive, and neutral PSFs on seed germination. Although conspecific and heterospecific soils for pairs with significant PSFs contained host‐specialized soil fungal communities, soils with specialized microbial communities did not always lead to PSFs. The identity of host‐specialized pathogens, that is, taxa uniquely present or significantly more abundant in soils conditioned by plant species experiencing negative PSFs, overlapped among plant species, while putative pathogens within a single host plant species differed depending on the identity of the heterospecific plant partner. Finally, the magnitude of feedback on germination was not related to the degree of fungal community differentiation between species pairs involved in negative PSFs.

    Synthesis. Our findings reveal the potential importance of PSFs at the seed stage. Although plant species developed specialized fungal communities in rhizosphere soil, pathogens were not strictly host‐specific and varied not just between plant species, but according to the identity of plant partner. These results illustrate the complexity of microbe‐mediated interactions between plants at different life stages that next‐generation sequencing can begin to unravel.

     
    more » « less
  3. Campbell, Barbara J. (Ed.)
    ABSTRACT In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C 3 forb, C 4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling. IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways. 
    more » « less
  4. null (Ed.)
    Abstract Background Plants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of root-associated microbiotas is not well understood, especially not under realistic field conditions. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the USA. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soils with different properties. Results Our analysis showed that BX secretion affected the community composition of the rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of BX exudation was at least as strong as the genetic background, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three field experiments. However, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae and enriched various potential plant pathogenic fungi in the roots across the different environments. Conclusions These findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different conditions. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions. 
    more » « less
  5. Abstract Aims and background

    The resurrection plantMyrothamnus flabellifoliatolerates complete desiccation and is a great model for studying how plants cope with extreme drought. Root-associated microbes play a major role in stress tolerance and are an attractive target for enhancing drought tolerance in staple crops. However, how these dynamics play out under the most extreme water limitation remains underexplored. This study aimed to identify bacterial and fungal communities that tolerate extreme drought stress in the bulk soil, rhizosphere, and endosphere ofM. flabellifolia.

    Methods

    High-throughput amplicon sequencing was used to characterise the microbial communities associated withM. flabellifolia.

    Results

    The bacterial phyla that were most abundant across all compartments wereAcidobacteriota, Actinobacteriota, Chloroflexota, Planctomycetota,andPseudomonadota, while the most abundant fungal phyla wereAscomycotaandBasidiomycota. Although the bulk soil hosted multiple beneficial root-associated microbes, the rhizosphere compartment showed the highest functional diversity of bacteria and fungi. In contrast, the endosphere exhibited a low abundance and diversity of microbes. These findings share consistent with the theory thatM. flabellifoliarecruits soil microbes from the bulk to the rhizosphere and finally to the endosphere. It is possible that these microbes could promote drought tolerance in associated plant tissues.

    Conclusion

    We find that compartments act as the major driver of microbial diversity, but the soil physicochemical factors also influence microbial composition. These results suggest that the root-associated microbiome ofM. flabellifoliais highly structured and may aid in plant function.

     
    more » « less