skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Examination of Fungal and Bacterial Assemblages in Bulk and Rhizosphere Soils under Solanum tuberosum in Southeastern Wyoming, USA
Solanum tuberosum, commonly known as potato, is the most important non-cereal crop in the world. However, its cultivation is prone to disease and other issues. In recent years, a newfound interest in the soil microbiome and the potential benefits it may convey has led researchers to study plant–microbe interactions in great detail and has led to the identification of putative beneficial microbial taxa. In this survey, we examined fungal and bacterial diversity using high-throughput sequencing in soils under a potato crop in southeastern Wyoming, USA. Our results show decreased microbial diversity in the rhizosphere, with increases in the abundances of arbuscular mycorrhizal fungi as well as pathogenic microbes. We show coarse taxonomic differences in microbial assemblages when comparing the bulk and rhizosphere soils for bacteria but not for fungi, suggesting that the two kingdoms respond differently to the selective pressures of the rhizosphere. Using cooccurrence network analysis, we identify microbes that may serve as keystone taxa and provide benefits to their host plants through competitive exclusion of detrimental pathogenic taxa and increased nutrient availability. Our results provide additional information on the structure and complexity of the potato rhizosphere microbiome and highlight candidate taxa for microbial isolation and inoculation.  more » « less
Award ID(s):
1655726
PAR ID:
10326586
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Microbiology
Volume:
1
Issue:
2
ISSN:
2673-8007
Page Range / eLocation ID:
162 to 176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Campbell, Barbara J. (Ed.)
    ABSTRACT In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C 3 forb, C 4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling. IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways. 
    more » « less
  2. Abstract We conducted a research campaign in a neotropical rainforest in Costa Rica throughout the drought phase of an El‐Nino Southern Oscillation event to determine microbial community dynamics and soil C fluxes. Our study included nests of the leafcutter antAtta cephalotes, as soil disturbances made by these ecosystem engineers may influence microbial drought response. Drought decreased the diversity of microbes and the abundance of core microbiome taxa, including Verrucomicrobial bacteria and Sordariomycete fungi. Despite initial responses of decreasing diversity and altered composition, 6 months post‐drought the microbiomes were similar to pre‐drought conditions, demonstrating the resilience of soil microbial communities to drought events.A. cephalotesnests altered fungal composition in the surrounding soil, and reduced both fungal mortality and growth of Acidobacteria post‐drought. Drought increased CH4consumption in soils due to lower soil moisture, andA. cephalotesnests decrease the variability of CH4emissions in some soil types. CH4emissions were tracked by the abundance of methanotrophic bacteria and fungal composition. These results characterize the microbiome of tropical soils across both time and space during drought and provide evidence for the importance of leafcutter ant nests in shaping soil microbiomes and enhancing microbial resilience during climatic perturbations. 
    more » « less
  3. The structure of the leaf microbiome can alter host fitness and change in response to abiotic and biotic factors, like seasonality, climate, and leaf age. However, relatively few studies consider the influence of host age on microbial communities at a time scale of a few days, a short time scale relevant to microbes. To understand how host age modulates changes in the fungal and bacterial leaf microbiome on a short time scale, we ran independent field and greenhouse-based studies and characterized phyllosphere communities using next-generation sequencing approaches. Our field study characterized changes in the fungal and bacterial phyllosphere by examining leaves of different relative ages across individuals, whereas the greenhouse study examined changes in the fungal microbiome by absolute leaf age across individuals. Together, these results indicate that fungal communities are susceptible to change as a leaf ages as evidenced by shifts in the diversity of fungal taxa both in the field and the greenhouse. Similarly, there were increases in the diversity of fungal taxa by leaf age in the greenhouse. In bacterial communities in the field, we observed changes in the diversity, composition, and relative abundance of common taxa. These findings build upon previous literature characterizing host-associated communities at longer time scales and provide a foundation for targeted work examining how specific microbial taxa might interact with each other, such as fine-scale interactions between pathogenic and non-pathogenic species. 
    more » « less
  4. Abstract Aims and backgroundThe resurrection plantMyrothamnus flabellifoliatolerates complete desiccation and is a great model for studying how plants cope with extreme drought. Root-associated microbes play a major role in stress tolerance and are an attractive target for enhancing drought tolerance in staple crops. However, how these dynamics play out under the most extreme water limitation remains underexplored. This study aimed to identify bacterial and fungal communities that tolerate extreme drought stress in the bulk soil, rhizosphere, and endosphere ofM. flabellifolia. MethodsHigh-throughput amplicon sequencing was used to characterise the microbial communities associated withM. flabellifolia. ResultsThe bacterial phyla that were most abundant across all compartments wereAcidobacteriota, Actinobacteriota, Chloroflexota, Planctomycetota,andPseudomonadota, while the most abundant fungal phyla wereAscomycotaandBasidiomycota. Although the bulk soil hosted multiple beneficial root-associated microbes, the rhizosphere compartment showed the highest functional diversity of bacteria and fungi. In contrast, the endosphere exhibited a low abundance and diversity of microbes. These findings share consistent with the theory thatM. flabellifoliarecruits soil microbes from the bulk to the rhizosphere and finally to the endosphere. It is possible that these microbes could promote drought tolerance in associated plant tissues. ConclusionWe find that compartments act as the major driver of microbial diversity, but the soil physicochemical factors also influence microbial composition. These results suggest that the root-associated microbiome ofM. flabellifoliais highly structured and may aid in plant function. 
    more » « less
  5. Abstract The rhizosphere has been called “one of the most complex ecosystems on earth” because it is a hotspot for interactions among millions of microbial cells. Many of these are microbes are also participating in a dynamic interplay with host plant tissues, signaling pathways, and metabolites. Historically, breeders have employed aplant‐centric perspective when trying to harness the potential of microbiome‐derived benefits to improve productivity and resilience of economically important plants. This is potentially problematic because: (i) the evolution of the microbes themselves is often ignored, and (ii) it assumes that the fitness of interacting plants and microbes is strictly aligned. In contrast, amicrobe‐centric perspective recognizes that putatively beneficial microbes are still under selection to increase their own fitness, even if there are costs to the host. This can lead to the evolution of sophisticated, potentially subtle, ways for microbes to manipulate the phenotype of their hosts, as well as other microbes in the rhizosphere. We illustrate this idea with a review of cases where rhizosphere microbes have been demonstrated to directly manipulate host root growth, architecture and exudation, host nutrient uptake systems, and host immunity and defense. We also discuss indirect effects, whereby fitness outcomes for the plant are a consequence of ecological interactions between rhizosphere microbes. If these consequences are positive for the plant, they can potentially be misconstrued as traits that have evolved to promote host growth, even if they are a result of selection for unrelated functions. The ubiquity of both direct microbial manipulation of hosts and context‐dependent, variable indirect effects leads us to argue that an evolutionary perspective on rhizosphere microbial ecology will become increasingly important as we continue to engineer microbial communities for crop production. 
    more » « less