skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Archetypal Analysis for neuronal clique detection in low-rate calcium fluorescence imaging
Archetypal analysis (AA) is a versatile data analysis method to cluster distinct features within a data set. Here, we demonstrate a framework showing the power of AA to spatio-temporally resolve events in calcium imaging, an imaging modality commonly used in neurobiology and neuroscience to capture neuronal communication patterns. After validation of our AA-based approach on synthetic data sets, we were able to characterize neuronal communication patterns in recorded calcium waves. Clinical relevance– Transient calcium events play an essential role in brain cell communication, growth, and network formation, as well as in neurodegeneration. To reliably interpret calcium events from personalized medicine data, where patterns may differ from patient to patient, appropriate image processing and signal analysis methods need to be developed for optimal network characterization.  more » « less
Award ID(s):
1846271
PAR ID:
10326631
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Xplore digital library
ISSN:
2473-2001
ISBN:
978-1-7281-2782-8
Format(s):
Medium: X
Location:
Glasgow, Scotland, United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-photon calcium imaging provides large-scale recordings of neuronal activities at cellular resolution. A robust, automated and high-speed pipeline to simultaneously segment the spatial footprints of neurons and extract their temporal activity traces while decontaminating them from background, noise and overlapping neurons is highly desirable to analyse calcium imaging data. Here we demonstrate DeepCaImX, an end-to-end deep learning method based on an iterative shrinkage-thresholding algorithm and a long short-term memory neural network to achieve the above goals altogether at a very high speed and without any manually tuned hyperparameter. DeepCaImX is a multi-task, multi-class and multi-label segmentation method composed of a compressed sensing-inspired neural network with a recurrent layer and fully connected layers. The neural network can simultaneously generate accurate neuronal footprints and extract clean neuronal activity traces from calcium imaging data. We trained the neural network with simulated datasets and benchmarked it against existing state-of-the-art methods with in vivo experimental data. DeepCaImX outperforms existing methods in the quality of segmentation and temporal trace extraction as well as processing speed. DeepCaImX is highly scalable and will benefit the analysis of mesoscale calcium imaging. 
    more » « less
  2. The inference of neuronal connectome from large-scale neuronal activity recordings, such as two-photon Calcium imaging, represents an active area of research in computational neuroscience. In this work, we developed FARCI (Fast and Robust Connectome Inference), a MATLAB package for neuronal connectome inference from high-dimensional two-photon Calcium fluorescence data. We employed partial correlations as a measure of the functional association strength between pairs of neurons to reconstruct a neuronal connectome. We demonstrated using in silico datasets from the Neural Connectomics Challenge (NCC) and those generated using the state-of-the-art simulator of Neural Anatomy and Optimal Microscopy (NAOMi) that FARCI provides an accurate connectome and its performance is robust to network sizes, missing neurons, and noise levels. Moreover, FARCI is computationally efficient and highly scalable to large networks. In comparison with the best performing connectome inference algorithm in the NCC, Generalized Transfer Entropy (GTE), and Fluorescence Single Neuron and Network Analysis Package (FluoroSNNAP), FARCI produces more accurate networks over different network sizes, while providing significantly better computational speed and scaling. 
    more » « less
  3. Understanding how networks of neurons transmit information is crucial to uncovering the underlying mechanisms of brain function. A common measure of communication in neuronal networks is functional connectivity. But, due to the presence of many latent confounding factors in existing experimental paradigms, functional connectivity estimates do not allow a direct interpretation of causal interactions in a network. Here, we aim at addressing this challenge using a quasi-experimental approach, namely Instrumental Variables, in a concurrent optogenetic stimulation of two-photon calcium imaging paradigm. We propose a methodology based on variational inference that allows estimating the spiking activity from blurred and noisy two-photon observations. We then use maximum likelihood estimation to construct a statistical testing framework that allows to distinguish between direct and confounding pairwise effects, by taking a set of random stimulation patterns as the instrumental variables. We demonstrate the utility of our approach using simulated data and compare its performance with existing work. Our results show that the proposed method can achieve high sensitivity and specificity in functional network discovery in presence of confounding effects and using a limited number of stimulation patterns and trials. 
    more » « less
  4. Abstract Probabilistic graphical models have become an important unsupervised learning tool for detecting network structures for a variety of problems, including the estimation of functional neuronal connectivity from two‐photon calcium imaging data. However, in the context of calcium imaging, technological limitations only allow for partially overlapping layers of neurons in a brain region of interest to be jointly recorded. In this case, graph estimation for the full data requires inference for edge selection when many pairs of neurons have no simultaneous observations. This leads to the graph quilting problem, which seeks to estimate a graph in the presence of block‐missingness in the empirical covariance matrix. Solutions for the graph quilting problem have previously been studied for Gaussian graphical models; however, neural activity data from calcium imaging are often non‐Gaussian, thereby requiring a more flexible modelling approach. Thus, in our work, we study two approaches for nonparanormal graph quilting based on the Gaussian copula graphical model, namely, a maximum likelihood procedure and a low rank‐based framework. We provide theoretical guarantees on edge recovery for the former approach under similar conditions to those previously developed for the Gaussian setting, and we investigate the empirical performance of both methods using simulations as well as real data calcium imaging data. Our approaches yield more scientifically meaningful functional connectivity estimates compared to existing Gaussian graph quilting methods for this calcium imaging data set. 
    more » « less
  5. Mutations in autism spectrum disorder (ASD) risk genes disrupt neural network dynamics that ultimately lead to abnormal behavior. To understand how ASD-risk genes influence neural circuit computation during behavior, we analyzed the hippocampal network by performing large-scale cellular calcium imaging from hundreds of individual CA1 neurons simultaneously in transgenic mice with total knockout of the X-linked ASD-risk geneNEXMIF(neurite extension and migration factor). AsNEXMIFknockout in mice led to profound learning and memory deficits, we examined the CA1 network during voluntary locomotion, a fundamental component of spatial memory. We found thatNEXMIFknockout does not alter the overall excitability of individual neurons but exaggerates movement-related neuronal responses. To quantify network functional connectivity changes, we applied closeness centrality analysis from graph theory to our large-scale calcium imaging datasets, in addition to using the conventional pairwise correlation analysis. Closeness centrality analysis considers both the number of connections and the connection strength between neurons within a network. We found that in wild-type mice the CA1 network desynchronizes during locomotion, consistent with increased network information coding during active behavior. UponNEXMIFknockout, CA1 network is over-synchronized regardless of behavioral state and fails to desynchronize during locomotion, highlighting how perturbations in ASD-implicated genes create abnormal network synchronization that could contribute to ASD-related behaviors. 
    more » « less