skip to main content


Title: FluidSMR: Adaptive Management for Hybrid SMR Drives
Hybrid Shingled Magnetic Recording (H-SMR) drives are the most recently developed SMR drives, which allow dynamic conversion of the recording format between Conventional Magnetic Recording (CMR) and SMR on a single disk drive. We identify the unique opportunities of H-SMR drives to manage the tradeoffs between performance and capacity, including the possibility of adjusting the SMR area capacity based on storage usage and the flexibility of dynamic data swapping between the CMR area and SMR area. We design and implement FluidSMR, an adaptive management scheme for hybrid SMR Drives, to fully utilize H-SMR drives under different workloads and capacity usages. FluidSMR has a two-phase allocation scheme to support a growing usage of the H-SMR drive. The scheme can intelligently determine the sizes of the CMR and the SMR space in an H-SMR drive based on the dynamic changing of workloads. Moreover, FluidSMR uses a cache in the CMR region, managed by a proposed loop-back log policy, to reduce the overhead of updates to the SMR region. Evaluations using enterprise traces demonstrate that FluidSMR outperforms baseline schemes in various workloads by decreasing the average I/O latency and effectively reducing/controlling the performance impact of the format conversion between CMR and SMR.  more » « less
Award ID(s):
1812537
NSF-PAR ID:
10326845
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Storage
Volume:
17
Issue:
4
ISSN:
1553-3077
Page Range / eLocation ID:
1 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The emergence of Hybrid Shingled Magnetic Recording (H-SMR) allows dynamic conversion of the recording format between Conventional Magnetic Recording (CMR) and SMR on a single disk drive. H-SMR is promising for its ability to manage the performance/capacity trade-off on the disk platters and to adaptively support different application scenarios in large-scale storage systems. However, there is little research on how to efficiently manage data and space in such H-SMR drives. In this paper, we present ZoneAlloy, an elastic data and space management scheme for H-SMR drives, to explore the benefit of using such drives. ZoneAlloy initially allocates CMR space for the application and then gradually converts the disk format from CMR to SMR to create more space for the application. ZoneAlloy controls the overhead of the format conversion on the application I/O with our quantized migration mechanism. When data is stored in an SMR area, ZoneAlloy reduces the SMR update overhead using H-Buffer and Zone-Swap. H-Buffer is a small host-controlled CMR space that absorbs the SMR updates and migrates those updates back to the SMR space in batches to bring down the SMR update cost. Zone-Swap dynamically swaps "hot" data from the SMR space to the CMR space to further alleviate the SMR update problem. Evaluation results based on MSR-Cambridge traces demonstrate that ZoneAlloy can reduce the average I/O latency and limit the performance degradation of the application I/O during format conversion. 
    more » « less
  2. Host-Aware/Drive-Managed Shingled Magnetic Recording (SMR) drives can accept non sequential writes using a buffer called media cache. Data in the media cache will be migrated to its designated location by a cleaning process if the buffer is full (blocking cleaning) or the drive is idle (idle cleaning). However, blocking cleanings can severely extend the I/O response time. Therefore, it is crucial to fully understand the cleaning process and find ways of mitigating the caused performance degradation. In this article we further evaluate the cleaning process and propose a potential remedy scheme called Idler on Host-Aware SMR drives. Idler adaptively induces idle cleanings based on dynamic workload characteristics and media cache usages to reduce the severity of blocking cleanings. Our evaluations show that in the workloads with a small non-sequential write ratio (about 10 percent), Idler can reduce the tail response time and the workload finish time by 56–88 and 10–23 percent, respectively, compared with those without such control. With the help of an external write buffer on an SSD, the tail response time of SMR drives with Idler can be closer to that of conventional disk drives. 
    more » « less
  3. Key-value (KV) stores play an increasingly critical role in supporting diverse large-scale applications in modern data centers hosting terabytes of KV items which even might reside on a single server due to virtualization purpose. The combination of ever growing volume of KV items and storage/application consolidation is driving a trend of high storage density for KV stores. Shingled Magnetic Recording (SMR) represents a promising technology for increasing disk capacity, but it comes at a cost of poor random write performance and severe I/O amplification. Applications/software working with SMR devices need to be designed and optimized in an SMR-friendly manner. In this work, we present SEALDB, a Log-Structured Merge tree (LSM-tree) based key-value store that is specifically op- timized for and works well with SMR drives via adequately addressing the poor random writes and severe I/O amplification issues. First, for LSM-trees, SEALDB concatenates SSTables of each compaction, and groups them into sets. Taking sets as the basic unit for compactions, SEALDB improves compaction efficiency by mitigating random I/Os. Second, SEALDB creates varying size bands on HM-SMR drives, named dynamic bands. Dynamic bands not only accommodate the storage of sets, but also eliminate the auxiliary write amplification from SMR drives. We demonstrate the advantages of SEALDB via extensive experiments in various workloads. Overall, SEALDB delivers impressive performance improvement. Compared with LevelDB, SEALDB is 3.42× faster on random load due to improved compaction efficiency and eliminated auxiliary write amplification on SMR drives. 
    more » « less
  4. Shingled Magnetic Recording (SMR) may be combined with conventional (re-writable) recording on the same drive; in host-managed drives shipping today this capability is used to provide a small number of re-writable zones, typically totaling a few tens of GB. Although these re-writable zones are widely used by SMR-aware applications, the literature to date has ignored them and focused on fully-shingled devices. We describe μCache, an SMR translation layer (STL) using re-writable (mutable) zones to take advantage of both workload spatial and temporal locality to reduce the garbage collection overhead resulted from out-of-place writes. In μCache the volume LBA space is divided into fixed -sized buckets and, on write access, the corresponding bucket is copied (promoted) to the re-writable zones, allowing subsequent writes to the same bucket be served in - place resulting in fewer garbage collection cycles. We evaluate μCache in simulation against real-world traces and show that with appropriate parameters it is able to hold the entire write working set of most workloads in re-writable storage, virtually eliminating garbage collection overhead. We also emulate μCache by replaying its translated traces against actual drive and show that 1) it outperforms its examined counterpart, an E-region based translation approach on average by 2x and up to 5.1x, and 2) it incurs additional latency only for a small fraction of write operations, (up to 10%) when compared with conventional non-shingled disks. 
    more » « less
  5. Host-managed shingled magnetic recording drives (HMSMR) give a capacity advantage to harness the explosive growth of data. Applications where data is sequentially written and randomly read, such as key-value stores based on Log-Structured Merge Trees (LSM-trees), make the HMSMR an ideal solution due to its capacity, predictable performance, and economical cost. However, building an LSMtree based KV store on HM-SMR drives presents severe challenges in maintaining the performance and space efficiency due to the redundant cleaning processes for applications and storage devices (i.e., compaction and garbage collections). To eliminate the overhead of on-disk garbage collections (GC) and improve compaction efficiency, this paper presents GearDB, a GC-free KV store tailored for HMSMR drives. GearDB proposes three new techniques: a new on-disk data layout, compaction windows, and a novel gear compaction algorithm. We implement and evaluate GearDB with LevelDB on a real HM-SMR drive. Our extensive experiments have shown that GearDB achieves both good performance and space efficiency, i.e., on average 1:71 faster than LevelDB in random write with a space efficiency of 89.9%. 
    more » « less