skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Successful Long-Distance Breeding Range Expansion of a Top Marine Predator
Little is known about the effects of large-scale breeding range expansions on the ecology of top marine predators. We examined the effects of a recent range expansion on the breeding and foraging ecology of Laysan albatrosses ( Phoebastria immutabilis ). Laysan albatrosses expanded from historical breeding colonies in the Central Pacific Ocean to the Eastern Pacific Ocean around central Baja California, Mexico, leading to a 4,000-km shift from colonies located adjacent to the productive transition zone in the Central Pacific to colonies embedded within the eastern boundary current upwelling system of the Eastern Pacific California Current. We use electronic tagging and remote sensing data to examine the consequences of this range expansion on at-sea distribution, habitat use, foraging habitat characteristics, and foraging behavior at sea by comparing birds from historic and nascent colonies. We found the expansion resulted in distinct at-sea segregation and differential access to novel oceanographic habitats. Birds from the new Eastern Pacific colony on Guadalupe Island, Mexico have reduced ranges, foraging trip lengths and durations, and spend more time on the water compared to birds breeding in the Central Pacific on Tern Island, United States. Impacts of the range expansion to the post-breeding season were less pronounced where birds maintained some at-sea segregation but utilized similar habitat and environmental variables. These differences have likely benefited the Eastern Pacific colony which has significantly greater reproductive output and population growth rates. Laysan albatrosses have the plasticity to adapt to distinctly different oceanographic habitats and also provide insight on the potential consequences of range shifts to marine organisms.  more » « less
Award ID(s):
2049303
PAR ID:
10326872
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate change has marked effects on global weather patterns and oceanic systems, impacting animal behaviour and fitness in potentially profound ways. Despite this, we lack detailed information about species’ responses to climatic variation. Using an 11-year tracking dataset of over 300 individual birds, we explore the consequences of variation in the Southern Annular Mode (SAM) and Southern Oscillation Index (SOI) for individual behaviour and fitness in wandering albatrosses Diomedea exulans breeding in the Southern Indian Ocean. Our results reveal distinct responses between males and females to climatic variation that align with the impacts of each climatic index on the distinct foraging ranges of each sex. In positive SAM phases, linked to poorer foraging conditions in female ranges and better conditions in male ranges, females exhibited behaviour consistent with reduced foraging success: that is, fewer prey capture attempts, and more movement between feeding patches. Males, on the other hand, showed no behavioural change. During positive SOI phases, associated with good foraging conditions in both male and female foraging ranges, both sexes showed evidence of more successful foraging, with birds engaging in more search behaviour, and taking shorter trips with fewer prey capture attempts, together indicating increased food intake per unit time. We found limited evidence for a role of individual variation, as measured through differences in personality, suggesting that plastic responses to climate are sufficiently important so as to obscure inter-individual variation. Supporting this was the finding that individual breeding success was unaffected by climatic variation, suggesting that plastic foraging behaviour allows albatrosses to mitigate climate impacts and maintain reproductive output. 
    more » « less
  2. Explaining why animal groups vary in size is a fundamental problem in behavioral ecology. One hypothesis is that life-history differences among individuals lead to sorting of phenotypes into groups of different sizes where each individual does best. This hypothesis predicts that individuals should be relatively consistent in their use of particular group sizes across time. Little is known about whether animals’ choice of group size is repeatable across their lives, especially in long-lived species. We studied consistency in choice of breeding-colony size in colonially nesting cliff swallows ( Petrochelidon pyrrhonota ) in western Nebraska, United States, over a 32-year period, following 6,296 birds for at least four breeding seasons. Formal repeatability of size choice for the population was about 0.41. About 45% of individuals were relatively consistent in choice of colony size, while about 40% varied widely in the colony size they occupied. Birds using the smaller and larger colonies appeared more consistent in size use than birds occupying more intermediate sized colonies. Consistency in colony size was also influenced by whether a bird used the same physical colony site each year and whether the site had been fumigated to remove ectoparasites. The difference between the final and initial colony sizes for an individual, a measure of the net change in its colony size over its life, did not significantly depart from 0 for the dataset as a whole. However, different year-cohorts did show significant net change in colony size, both positive and negative, that may have reflected fluctuating selection on colony size among years based on climatic conditions. The results support phenotypic sorting as an explanation for group size variation, although cliff swallows also likely use past experience at a given site and the extent of ectoparasitism to select breeding colonies. 
    more » « less
  3. Elegant terns Thalasseus elegans breed in a very limited area of the northern Gulf of California and the Pacific coast of southern California, with up to 95% (mean 78%, 1991–2014, Perez et al., 2020 ) of the population nesting on Isla Rasa in the northern Gulf of California. On Isla Rasa, the primary nesting colony, elegant terns suffered predation by rodents which raised the possibility of population extinction, with a substantial proportion of the world population nesting on this single island. Because of this threat, rodents were successfully removed from Isla Rasa in 1995. The removal of rodents from Isla Rasa led to a near immediate increase in the population of elegant terns. That increase was associated with a changing pattern in dispersal by the terns, including extraordinary movements to the Gulf of Mexico, the Atlantic coast of the United States north to Massachusetts, and, remarkably, to western Europe. A few elegant terns successfully bred at these European localities during 2009 to the present. In this paper we use this exceptional example of long-distance dispersal to illustrate how rapid population growth during ∼ 1995 to present can lead to successful colonization of remote sites through repeated instances of vagrancy. We tested four Hypotheses that together support the idea that the growing population of elegant terns has produced increasing numbers of young, and these young have spread, through the mechanism of vagrancy, to the Pacific Northwest, the east coast of the United States, and western Europe. Our Hypotheses are: (1) The nesting population of elegant terns within their core nesting range has increased since removal of rodents from Isla Rasa; (2) Occurrence of vagrant elegant terns in the Pacific Northwest is driven by population growth within the core breeding range. (3) Occurrence of vagrant elegant terns at the east coast of the United States is driven by population growth within the core breeding range. (4) Occurrence and colonization of western Europe by elegant terns is driven by nesting population size within the core breeding range. Corollaries of these Hypotheses are, (i) that there is a time lag in occurrence of vagrants at each of these areas, based on increasing distance from the core breeding range and (ii) the number of vagrants in any given year is also related to sea surface temperature (SST), as expressed by Oceanic Niño Index, a proxy for food resource levels. Generally we found strong statistical support for each of these Hypotheses; an exception was for the occurrence of elegant terns in the Pacific Northwest, which initially occurred following El Niño events (low food supply) and profound breeding failure, but later corresponding to cold water years with high breeding success. We use elegant terns, exceptional for the highly restricted breeding range and sustained population growth over 25 years, to illustrate how growing populations may colonize very distant habitats through repeated instances of vagrancy. 
    more » « less
  4. null (Ed.)
    Abstract Group-size variation is common in colonially breeding species, including seabirds, whose breeding colonies can vary in size by several orders of magnitude. Seabirds are some of the most threatened marine taxa and understanding the drivers of colony size variation is more important than ever. Reproductive success is an important demographic parameter that can impact colony size, and it varies in association with a number of factors, including nesting habitat quality. Within colonies, seabirds often aggregate into distinct groups or subcolonies that may vary in quality. We used data from two colonies of Adélie penguins 73 km apart on Ross Island, Antarctica, one large and one small to investigate (1) How subcolony habitat characteristics influence reproductive success and (2) How these relationships differ at a small (Cape Royds) and large (Cape Crozier) colony with different terrain characteristics. Subcolonies were characterized using terrain attributes (elevation, slope aspect, slope steepness, wind shelter, flow accumulation), as well group characteristics (area/size, perimeter-to-area ratio, and proximity to nest predators). Reproductive success was higher and less variable at the larger colony while subcolony characteristics explained more of the variance in reproductive success at the small colony. The most important variable influencing subcolony quality at both colonies was perimeter-to-area ratio, likely reflecting the importance of nest predation by south polar skuas along subcolony edges. The small colony contained a higher proportion of edge nests thus higher potential impact from skua nest predation. Stochastic environmental events may facilitate smaller colonies becoming “trapped” by nest predation: a rapid decline in the number of breeding individuals may increase the proportion of edge nests, leading to higher relative nest predation and hindering population recovery. Several terrain covariates were retained in the final models but which variables, the shapes of the relationships, and importance varied between colonies. 
    more » « less
  5. Abstract ContextThe interaction between topography and wind influences snow cover patterns, which can determine the distribution of species reliant on snow-free habitats. Past studies suggest snow accumulation creates suboptimal breeding habitats for Adélie penguins, leading to colony extinctions. However, evidence linking snow cover to landscape features is lacking. ObjectivesWe aimed to model landscape-driven snow cover patterns, identify long-term weather changes, and determine the impact of geomorphology and snow conditions on penguin colony persistence. MethodsWe combined remotely sensed imagery, digital surface models, and > 30 years of weather data with penguin population monitoring from 1975 to 2022 near Palmer Station, west Antarctic Peninsula. Using a multi-model approach, we identified landscape factors driving snow distribution on two islands. Historic and current penguin sub-colony perimeters were used to understand habitat selection, optimal habitat features, and factors associated with extinctions. ResultsDecadal and long-term trends in wind and snow conditions were detected. Snow accumulated on lower elevations and south-facing slopes driven by the north-northeasterly winds while Adélie penguins occupied higher elevations and more north-facing slopes. On Torgersen Island, sub-colonies on south aspects have gone extinct, and only five of the 23 historic sub-colonies remain active, containing 7% of the 1975 population. Adélie penguins will likely be extinct on this island in < 25 years. ConclusionsAdélie penguin populations are in decline throughout the west Antarctic Peninsula with multiple climate and human impacts likely driving Adélie penguins towards extinction in this region. We demonstrate precipitation has detrimental effects on penguins, an often overlooked yet crucial factor for bird studies. 
    more » « less